[1] |
Z. Mroz, An attempt to describe the behavior of metals under cyclic loads using more general work hardening model, Acta Mechanics, 7 (1967), 199-212.
|
[2] |
Y. F. Dafalias and E. P. Popov, Plastic internal variables ormalism of cyclic plasticity, J. Appl. Meclt., 43(1976), 645-651.
|
[3] |
J. L. Chaboche, et al., Modelization of strain effect on the cyclic hardening of 316 stainless steel, Trans. Int. Conf. Struct. Mech. in Reactor Tech., Paper No. L11/3, V. L. Berlin(1979).
|
[4] |
K. C. Valanis, A theory of viscoplasticity without a yield surface, Arclr. Mech., 23(1971),517-551.
|
[5] |
K. C. Valanis, Fundamental consequences on new intrinsic time measure as a limit of the endochronic theory, Arch. Mech., 32(1980), 171-190.
|
[6] |
O. Watanabe and S. N. Atlurr, Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: A unification of concept, Int. J. Plasticity. 2(1986), 37-52.
|
[7] |
沈立、韩铭宝.圆柱壳受轴向压缩塑性稳定性h1实验研究,固体力学学报,(1) (1982), 85-91
|
[8] |
X. Peng and A. R. S. Ponter, Extremal properties of endochronic plasticity, Part 1: Extremal path of the constitutive equation without a yield surface, lnt. J. Plasticim, 9 (1933), 551-566.
|
[9] |
中科院力学研究所固体力学室板壳组,《加筋圆柱曲板与圆柱壳》,科学出版社(1983), 317-348
|
[10] |
G. Gerard, Compressive and Torsional Buckling of Thin-WaIlCylinders in Yield Region, Tech. Note 3726, NACA (1956).
|
[11] |
X. Peng and J. Fan, A numerical approach for nonclassical plasticity, Computers acrd Structures, 47(1993), 313-320.
|