留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受轴向压缩圆柱壳塑性屈曲的内时分析

彭向和 陈元强 曾祥国

彭向和, 陈元强, 曾祥国. 受轴向压缩圆柱壳塑性屈曲的内时分析[J]. 应用数学和力学, 1995, 16(8): 745-755.
引用本文: 彭向和, 陈元强, 曾祥国. 受轴向压缩圆柱壳塑性屈曲的内时分析[J]. 应用数学和力学, 1995, 16(8): 745-755.
Peng Xianghe, Chen Yuanqiang, Zeng Xiangguo. Endochronic Analysis for Compressive Buckling of Thin- Walled Cylinders in Yield Reglon[J]. Applied Mathematics and Mechanics, 1995, 16(8): 745-755.
Citation: Peng Xianghe, Chen Yuanqiang, Zeng Xiangguo. Endochronic Analysis for Compressive Buckling of Thin- Walled Cylinders in Yield Reglon[J]. Applied Mathematics and Mechanics, 1995, 16(8): 745-755.

受轴向压缩圆柱壳塑性屈曲的内时分析

Endochronic Analysis for Compressive Buckling of Thin- Walled Cylinders in Yield Reglon

  • 摘要: 采用内时塑性本构方程的增量和全量表达式分析了受轴向压缩圆柱壳的塑性屈曲,得到了塑性屈曲临界应力σcr与圆柱壳特征尺寸R/h间的关系。对АМг和д1Т铝合金圆柱壳塑性屈曲进行了分析,与实验结果的比较表明:除对于АМг圆柱壳由内时塑性本构方程的全量表达式给出了较经典塑性理论全量分析略为保守的结果外,在其它杨合下,内时分析均给出了较经典塑性理论更符合实验数据的结果。
  • [1] Z. Mroz, An attempt to describe the behavior of metals under cyclic loads using more general work hardening model, Acta Mechanics, 7 (1967), 199-212.
    [2] Y. F. Dafalias and E. P. Popov, Plastic internal variables ormalism of cyclic plasticity, J. Appl. Meclt., 43(1976), 645-651.
    [3] J. L. Chaboche, et al., Modelization of strain effect on the cyclic hardening of 316 stainless steel, Trans. Int. Conf. Struct. Mech. in Reactor Tech., Paper No. L11/3, V. L. Berlin(1979).
    [4] K. C. Valanis, A theory of viscoplasticity without a yield surface, Arclr. Mech., 23(1971),517-551.
    [5] K. C. Valanis, Fundamental consequences on new intrinsic time measure as a limit of the endochronic theory, Arch. Mech., 32(1980), 171-190.
    [6] O. Watanabe and S. N. Atlurr, Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: A unification of concept, Int. J. Plasticity. 2(1986), 37-52.
    [7] 沈立、韩铭宝.圆柱壳受轴向压缩塑性稳定性h1实验研究,固体力学学报,(1) (1982), 85-91
    [8] X. Peng and A. R. S. Ponter, Extremal properties of endochronic plasticity, Part 1: Extremal path of the constitutive equation without a yield surface, lnt. J. Plasticim, 9 (1933), 551-566.
    [9] 中科院力学研究所固体力学室板壳组,《加筋圆柱曲板与圆柱壳》,科学出版社(1983), 317-348
    [10] G. Gerard, Compressive and Torsional Buckling of Thin-WaIlCylinders in Yield Region, Tech. Note 3726, NACA (1956).
    [11] X. Peng and J. Fan, A numerical approach for nonclassical plasticity, Computers acrd Structures, 47(1993), 313-320.
  • 加载中
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  134
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-07-11
  • 刊出日期:  1995-08-15

目录

    /

    返回文章
    返回