铅球飞行轨迹方程的微分解及应用
The Differential Solution to the Flying Locus Equation of the Shot and Its Application
-
摘要: 本文根据运动学原理建立了铅球轨迹方程,考虑铅球落点位置,利用微积分和三角函数理论求出手角极值和最大飞进距离,得出了最佳出手角、最大飞进距离与出手点高度初速度之间简单表达式,并通过计算制成了最佳出手角、最大飞进距离表。Abstract: This paper establishes a locus equation of the shot according to kinematicsl principles.By using differential and integral calculus and trigonometric function,we have found the eztreme value of the angles of delivery and the best flying distances,with the falling points of the shot considcred. Thus a simple expressioa showing the relationships a m ong the best angle of delivery,the flying distance,the height of delivery point and its initial velocity can be attained and a diagram can be made by calculating,showing the best angle of delivery and the best flying distance.
-
Key words:
- locus equation /
- eztreme value /
- angle of delivery /
- flying distance
-
[1] 《运动生物力学》编写组,《运动生物力学》,人民体育出版社(1986). [2] 马欣熙,《体育》,高教出版社(1987). [3] 《田径》编写组,《田径》,人民体育出版社(1983).
计量
- 文章访问数: 1893
- HTML全文浏览量: 122
- PDF下载量: 608
- 被引次数: 0