压电材料空间轴对称问题的通解及其应用
A General Solution And the Applicatlon of Space Axisymmetric Problem in Piezoelectric Material
-
摘要: 本文根据横观各向同性压电材料空间轴对称问题场方程的结构特点,利用逐次引进势函数的方法,最后得到将位移分量和电势函数用满足特定偏微分方程的单一势函数表示的所谓通解,推导过程表明这种形式的通解是完备的,作为应用举例,文中用通解求解了压电材料半无限体表面受集中力的问题,得到位移、应力、电位移分量及电势函数的解析表达式,本文所提供的通解可作为分析含空腔、夹杂或币形裂纹等缺陷的压电材料的机-电耦合行为的工具,算例所得结果可直接用于求解压电体相互间或压电体与普通弹性体间的接触问题。Abstract: According to the structure feature of the governing equations of space axisymmetric problem in transversely, isotropic piezoelectric material. using the method of introducing potential function one by one, in this paper we obtain the so-called general solution of displacement and eleclric potential function denoied by unique poiential function which satisfies specific partiality equations. As an applying example of the general solution, we solve problem of semi-infinile body made of piezoelectric material, on the surface of the semi-infinite body a concentrative force is applied, andget the analytic formulations of stress and electric displacement comiponenis. The general solution provided by this paper can be used as a tool to analyse the mechanical-electrical coupling behavior of piezoelecrtic material which conlains defects such ascavity, inclusion, penny-shape crack, and so on. The result of the solved problem canbe used directly to analyse contact problems which take place between two piezoelectric bodies or piezoelectric body and elastic body.
-
[1] Deeg, W. F., The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph. D. Thesis, Stanford University,(1980). [2] Pak, Y. E., Crack extension force in a piezoelectric material, Advanced Development Report, Grumman Corporation, 11, 1(1987), 20. [3] Sosal, H. A., Plane problems in piezoelectric media with defects. Int. J. Solids Structures, 28 (1991),491-505. [4] Sosa, H. A.and Y. E. Pak, Three-dimensional eigenfuction analysis of a crack in a piezoelectric material, Int. J. Solids Structures, 26(1990), 1-15.
计量
- 文章访问数: 2232
- HTML全文浏览量: 156
- PDF下载量: 626
- 被引次数: 0