Poincaré动力学方程Whittaker降阶法
Whittaker’s Reduction Method for Poincare’s Dynamical Equations
-
摘要: Whittaker降阶法是利用能量积分将一个完整动力系统的Lagrange运动方程降阶。本文论述了据李群理论构造的Poincaré方程所描述的非完整保守系统的相应结果。
-
关键词:
- 能量 /
- 完整系统 /
- 非完整系统 /
- 李群 /
- Poincaré方程
Abstract: Whitlaker's reduction method invokes the energy integral to reduce the order of Lagrange's equations of motion of aholonomic dynamical system This paper treats the coresponding result for a nonholonomic conservative system deseribed by poincar's equations which are constructed form the standpoint of the theory of Lie groups.-
Key words:
- energy /
- holonomic /
- nonholonomic /
- Lie group /
- Poincaré equations
-
[1] Djukic, D. S., Whittaker s equations of nonholonomic mechanical systems, Arri Aocad. Naz. Lincei Rend, Cl. Sci. Fis, Mat, Natur, 56,8(1974), 55-61. [2] Ghori, Q. K. and M. Hussain, Poincare's equations of nonholonomic dynamical systems, Z. Angewt Math. Mech. 53(1973), 391-396. [3] Guen, Fam, On the equations of motion of a nonholonomic mechanical system in Poincare-Chetaev variables, J. Appl. Math. Mech. 31(1967). 274-281. [4] Neimurk, Ju. I. and N. A., Fufaev, Dynamics of nonholonomic systems, Transl, Math, Monographs, Amer, Math, Soc., Providence, R. I., 33(1972). [5] Pats. L. A.. A treatise on Analytical Dynamics, Ox Bow Press, Connecticut,(1979). [6] Šalaev. V. G.. On the applicability of Whittaker's method to the dynamical equations of Maggi. Nancn, Trudy Taškent, Gos, Univ., 222(1963), 73-78. [7] White ker. E. T. A Treatise on Analytical Dynamics of Particles and rigid Bodies, 4th edition, Cambridge Univ. Press, Cambridge(1937).
计量
- 文章访问数: 2047
- HTML全文浏览量: 132
- PDF下载量: 420
- 被引次数: 0