Zn-等变的奇点理论*
Zn-Equivariant Singularity Theory
-
摘要: 本文详细讨论了Zn-等变奇点理论的基本概念,范式和万有开折的求法,并具体给出了非退化情况下Z3-等变奇点的范式和万有开折.它们为研究周期参数激励系统的亚谐分叉提供了一种方法.Abstract: The basic concepts, normal forms and universal unfoldings of Zn-equivariant singularity are investigated in the present paper. As an example, the normal forms and universal unfoldings of Z3-singularity are formulated. As a matter of fact, the theory provides a useful tool to study the subharmonic resonance bifurcation of the periodic parameter-excited system.
-
[1] Golubitsky M.,I.Stewart and D.G.Scheaffer,Singularities and Groups in Bifurcation Theory,Vol.1,2,Springer-Verlag,New York(1985,1988). [2] Sattinger.D.H.,Group Theoric Methods in Bifurcation Theory,Springer-Verlag,New York(1979). [3] Buzano,E.,G.Geymonant and T.Poston,Post-bucking behavior of non-linear hyperelastic thin rod with cross-section invariant under the dihedral group D.,Arch.Rational.Mech.Anal.,89,4(1985). [4] He Guo-wei,The Subharmonic Bifurcation of The Periodic Parameter-Excited System,Dissertation,Northwestern Polytechnical University(1991).
计量
- 文章访问数: 1979
- HTML全文浏览量: 118
- PDF下载量: 489
- 被引次数: 0