一类多分子反应微分方程模型的闭轨的存在性
Existence of Closed Orbits for a Differential Equation Model Concerning Multi-Molecule Reactions
-
摘要: 本文讨论一类生化反应模型dx/dt=1-xny2,dy/dt=α(xny2-y)的闭轨存在性,其中n∈N,x≥0,y≥0,α>0.我们将具体指出当α在一定条件下方程无闭轨或者从Hopf分枝中产生稳定的极限环.Abstract: In this paper, the existence of closed orbits for the biochemical reaction model dx/dt=1-xny2,dy/dt=a(xny2-y) is discussed, where n is a positive integer and x≥0,y≥0,a>0 We also point out that the equation has no dosed orbits or has stable limit cycles arising from Hopf bifurcations under a certain condition of a.
-
Key words:
- closed orbit /
- limit cycle /
- fine focus /
- Hopf bifurcation
-
[1] 陈兰荪,《数学生态学的理论和方法》,科学出版社〔1988). [2] 周建莹、张锦炎、曾宪武,生化反应中一类非线性方程的定性分析,应用数学学报,5(3)(1982),234-240. [3] 李嘉旭、范弘毅、姜天来、陈秀东,一类多分子反应微分方程模型的定性分析,生物数学学报,5(2)(1990),182-170. [4] 张锦炎,《常微分方程几何理论与分支问题》,北京大学出版社(1981).
计量
- 文章访问数: 1953
- HTML全文浏览量: 84
- PDF下载量: 627
- 被引次数: 0