留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解平片裂纹问题的有限部积分与边界元法

秦太验 汤任基

秦太验, 汤任基. 求解平片裂纹问题的有限部积分与边界元法[J]. 应用数学和力学, 1992, 13(12): 1045-1051.
引用本文: 秦太验, 汤任基. 求解平片裂纹问题的有限部积分与边界元法[J]. 应用数学和力学, 1992, 13(12): 1045-1051.
Qin Tai-yan, Tang Ren-ji. Finite-Part Integral and Boundary Element Method to Solve Flat Crack Problems[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1045-1051.
Citation: Qin Tai-yan, Tang Ren-ji. Finite-Part Integral and Boundary Element Method to Solve Flat Crack Problems[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1045-1051.

求解平片裂纹问题的有限部积分与边界元法

基金项目: 国家教委博士点基金资助项目

Finite-Part Integral and Boundary Element Method to Solve Flat Crack Problems

  • 摘要: 本文利用位移的Somigliana公式和有限部积分的概念,导出了求解三维弹性力学中的任意形状平片裂纹问题的超奇异积分方程组,进而联合使用有限部积分法与边界元法对所得方程建立了数值法.为验证本文的方法,计算了若干数值例子的裂纹面的位移间断及裂纹前沿的应力强度因子,它们与理论值相比符合很好.
  • [1] Ioakimidis,N.I.,Application of finite-part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity,Acta Mechanica,45(1982),31-47.
    [2] Bui,H.D.,An integral equations method for solving the problems of a plane crack of arbitrary shape,J.Mech.Phys.Solids,25(1977),29.
    [3] Weaver,J.,Three-dimensional crack analysis,Internat.J.Solids and Structures,13(1977),321.
    [4] Ioakimidis,N.I.,Remarks on the Gaussian quadrature rule for finite-part integrals with a second order singularity,Comput.Metheds.Appl.Mech.Engrg.,69(1988),325.
    [5] Tsamasphyros,G.and G.Dimou,Gauss quadrature rule for finite part integrals,Internat.J.Numer.Methods.Engrg.,30(1990),13-26.
    [6] Kaya,A.C.and F.Erdogan,On the solution of singular integral equations with strongly singular kernels,Quart.Appl.Math.,415,1(1987),105.
    [7] Sohn,G.H.and C.S.Hong,Application of singular integral equations to embedded planar crack problems in finite body,Boundary Element,C.A.Brebbia and G.Maier,Ed.,2(1985),8-57.
    [8] 汤任基,断裂力学中的两类奇异积分方程,上海交通大学学报,24(5-6)(1990),36.
    [9] Kutt,H.R.,The numerical evaluation of principal value integrals by finite-part integration,Numer.Math.,24(1975),205.
    [10] Zienkiewicz,O.C.,The Finite Element in Engineering Science,McGraw-Hill(1971).
    [11] Sneddon,I.N.and M.Lowengrub,Crack Problems in the Classical Theory of Elasticity,New York(1969).
  • 加载中
计量
  • 文章访问数:  2112
  • HTML全文浏览量:  115
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  1991-11-06
  • 刊出日期:  1992-12-15

目录

    /

    返回文章
    返回