留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变截面圆形管道粘性流动的伽辽金-摄动杂交解

沈新荣 高琪 章本照 张金锁

沈新荣, 高琪, 章本照, 张金锁. 变截面圆形管道粘性流动的伽辽金-摄动杂交解[J]. 应用数学和力学, 2004, 25(2): 197-205.
引用本文: 沈新荣, 高琪, 章本照, 张金锁. 变截面圆形管道粘性流动的伽辽金-摄动杂交解[J]. 应用数学和力学, 2004, 25(2): 197-205.
SHEN Xin-rong, GAO Qi, ZHANG Ben-zhao, ZHANG Jin-suo. Hybrid Perturbation-Galerkin Solution of the Flow in a Circular Cross-Section Tube With Constriction[J]. Applied Mathematics and Mechanics, 2004, 25(2): 197-205.
Citation: SHEN Xin-rong, GAO Qi, ZHANG Ben-zhao, ZHANG Jin-suo. Hybrid Perturbation-Galerkin Solution of the Flow in a Circular Cross-Section Tube With Constriction[J]. Applied Mathematics and Mechanics, 2004, 25(2): 197-205.

变截面圆形管道粘性流动的伽辽金-摄动杂交解

基金项目: 国家自然科学基金资助项目(10272096)
详细信息
    作者简介:

    沈新荣(1969- ),男,浙江杭州人,副教授,博士(联系人.Tel:13355789661;E-mail:xinrong.shen@263.net).

  • 中图分类号: O351

Hybrid Perturbation-Galerkin Solution of the Flow in a Circular Cross-Section Tube With Constriction

  • 摘要: 采用伽辽金-摄动杂交法来研究壁面是正弦形状的变截面圆形管道的粘性流动,从而避免了摄动小参数的局限性和单纯伽辽金法基函数选取的任意性的困难.讨论了边界和雷诺数对流动的影响,获得流动分离点和附着点的位置,还分析了壁面剪应力和摩擦系数沿轴向的变化情况.在小参数的情况下,计算所获得的结果与摄动解吻合良好.
  • [1] Waters S L,Pedley T J.Oscillatory flow in a tube of time-dependent curvature-Patr 1:Perturbation to flow in a stationary curved tube[J].J Fluid Mech,1999,383:327—352. doi: 10.1017/S0022112099004085
    [2] Young D F.Effect of a time dependent stenosis on flow through a tube[J].J Eng Industry, Trans ASME,1968,90:248—252. doi: 10.1115/1.3604621
    [3] Lee J S,Fung Y C.Flow in locally constricted tube at low Reynolds numbers[J].J Appl Mech,Trans ASME,1969,37:9—16.
    [4] Young D F,Tasi F Y.Flow characteristics in models of arterial stenosis Ⅰ-steady flow[J].J Biomech,1973,6:395—410. doi: 10.1016/0021-9290(73)90099-7
    [5] Young D F,Tasi F Y.Flow characteristics in models of arterial stenosis Ⅱ-unsteady flow[J].Ibid,1973,6:411—425.
    [6] Daly B J.A numerical study of pulsatile flow through stenosed canine femoral arteries[J].J Biomech,1976,9:465—475. doi: 10.1016/0021-9290(76)90090-7
    [7] Chow J C F,Soda K.Laminar flow in tubes with constriction[J].Phys Fluids,1972,15:1700—1708. doi: 10.1063/1.1693765
    [8] McDonald D A.On steady flow through modeled vascular stenosis[J].J Biomech,1979,12:13—20. doi: 10.1016/0021-9290(79)90004-6
    [9] Deshpande M D.Steady laminar and trubulent flow through vascular stenosis models[D].Ph D Dissertation. Georgia Institute of Technology,1977.
    [10] Morgan B E,Young D F.An integral method for the analysis of flow in arterial stenosis[J].Bull Math Biol,1974,36:39—53.
    [11] Young D F.The fluid mechanics of arterial stenosis[J].J Biomech Eng,Trans ASME,1979,101:157—175. doi: 10.1115/1.3426241
    [12] Ahmed K N,Chad D B.Hybrid perturbation/Bubnow-Galerkin technique for nonlinear thermal analysis[J].AIAA Journal,1984,22(2):287—294. doi: 10.2514/3.8381
    [13] Joseph C F C,Kunihisea S.Laminar flow in tubes with constriction[J].The Physics of Fluids,1972,15(10):1700—1706. doi: 10.1063/1.1693765
    [14] Padmanabhan N,Decanathan R.Mathematical model of an arterial stenosis,allowing for tethering[J].Medical & Biological Engineering & Computing,1981,19:385—390.
    [15] Padmanbhan N,Jayaraman G.Flow in a curved tube with constriction—an application to the arterial system[J].Medical & Biological Engineering & Computing,1985,25:208—215.
    [16] XUE Lei,TANG Jin-chun,SUN Bing-nan.Galerkin solutions of laminar flow in Helical elliptical pipes[J].Acta Mchanica Sinica,1998,30(6):648—655.
  • 加载中
计量
  • 文章访问数:  2596
  • HTML全文浏览量:  123
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-11-13
  • 修回日期:  2003-09-30
  • 刊出日期:  2004-02-15

目录

    /

    返回文章
    返回