留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线弹性动力学的某些一般定理及广义与广义分区变分原理*

邢京堂 郑兆昌

邢京堂, 郑兆昌. 线弹性动力学的某些一般定理及广义与广义分区变分原理*[J]. 应用数学和力学, 1992, 13(9): 795-810.
引用本文: 邢京堂, 郑兆昌. 线弹性动力学的某些一般定理及广义与广义分区变分原理*[J]. 应用数学和力学, 1992, 13(9): 795-810.
Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810.
Citation: Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810.

线弹性动力学的某些一般定理及广义与广义分区变分原理*

基金项目: * 博士点基金资助项目

Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics

  • 摘要: 从四维空间思想出发,在四种时端条件下,系统地推导得出了弹性动力学有关的一般定理,如:可能功作用量原理,虚位移原理,虚应力一动量原理,互易定理及由此导出的位移互等定理与始末时刻条件关系定理等;得出了线弹性动力学的位能作用量变分原理,余能作用量变分原理,动力问题的胡-鹫原理,H-R原理及本构关系变分原理.Hamilton原理,Toupin原理及有关文献如[5]、[17]~[24]的工作均可作为文中一般结果的特例.对应于有限元分析.在空间分区,时间分区及时空均分区情况.给出了动力学问题的分区位能作用量原理.分区余能作用量原理,分区混合能作用量原理及相应的分区广义变变分原理.导出了分区原理的一般形式.若去掉时间维及有关量,文中有关结果可转化为静力问题中有关的相应结果.
  • [1] Love,A.E.H,A Treatise on the Mathematical Theory of Elasticity,Cambridge University Press,Cambridge,1st Ed.(1892);4th Ed.(1927);Reprinted,Dover Publications,New York(1963).
    [2] 钱伟长、叶开沅,《弹性力学》,科学出版社,北京(1956).
    [3] Washizu,K.,Variational Methods in Elasticity and Plasticity,Pergamon Press,New York 1st Ed.(1968);2nd Ed.(1975);3rd Ed.(1982).
    [4] Розин Л.А./Вариационые Цостонвки Задач для Упруих систем,Изд.ЛГУ,Ленкыград(1978).
    [5] Oden,J.T.,and J.N.Reddy,Variational Methods in TheoreticalMechanics,Springer-Verlag,New York,1st Ed.(1976);2nd Ed.(1983).
    [6] 钱伟长,弹性理论中广义变分原理的研究及其在有限元计算中的应用,力学与实践(1979),(1),16-24,1(2),18-27.
    [7] 钱伟长,《变分法及有限元》.科学出版社,北京(1980).
    [8] 郭仲衡,《非线有弹性理论》,科学出版社,北京(1980).
    [9] 胡海昌,《弹性力学的变分原理及其应用》,科学出版社,北京(1981).
    [10] 龙驭球,弹性力学中的分区广义变分原理,上海力学,2(2)(1981),1-9.
    [11] Rayleigh,L.,Some general theorems relating to vibration,Proc.London Math.Soc.,4(1873),357-368.
    [12] Graffi,D.,Sui teoremi di reeiprocita nei fenomeni dipendenti dal tempo,Annali di Matematica,18(1939),173-200.
    [13] Andlef,N.N.,Reciprocal theorems in theory of vibration and sound,Physical Dictionary,1(1936),458.(in Russian).
    [14] GraM,D.,Über der reziprozitatsatz in der dynamik der elastischen korper,Ing.Arch.,22(1954),45-46.
    [15] 胡海昌,弹性体动力学中的倒易定理及它的一些应用,力学学报,1(1)(1957),63-76.
    [16] Lamb,H.,On reciprocal theorems in dynamics,London Math.Soc.Proc.,19(1888),144-151.
    [17] Toupin,R.A.,A variational principle for the mesh-type analysis of a mechanical system,J.A.M.,19,2(1952),151-152.
    [18] Crandall.S.H.,Complementary extremum principles for dynamics,Ninth Int.Con.Appl.Mech.,5(1957),80-87.
    [19] Green,A.E.and W.Zerna,Theoretical Elasticity,Oxford University Press,London(1954).
    [20] Chen Yu,Remarks on variational principles in elastodynamics,J.Fran.Inst.,278,1(1964).
    [21] Truesdell,C.and R.A.Toupin,The classical field theories,Encyclopedia of Physics,S.Flugge,Ed.,3,1(1960).
    [22] Yu Yi-yuan,Generalized Hamilton's principles and variational equation of motion in nonlinear elasticity theory with application to plate theory,J.A.S.A.,36,1(1964),111.
    [23] Barr,A.D.S.,An extension of the Hu-Washizu variational principle in linear elasticity for dynamic problems,J.Appl.Mech.,33(1966),465.
    [24] Dean,T.S.,and H.J.Plass,A dynamic variational principle for elastic bodies and its application to approximations in vibration problems,Devel.in Mech.,3,2(1965),167.
    [25] 邢京堂,弹性动力学的变分原理与模态合法的理论研究,硕士论文,清华大学工程力学系,北京(1981).
    [26] 邢京堂、关环兆昌,基于弹性动力学变分原理的模态综合法研究.固体力学学报,(2)(1983),248-257.
    [27] Xing Jing-tang and Zheng Chao-chang,Some general theorems and generalized and piece-generalized variational principles for elastodynamics,Reported at the Invitational China-American Workshop on Finite Element Method,Chengde,China(1986).
    [28] 邢京堂,流固藕合振动分析的有限元与子结构-子区域方法的理论及数值计算研究-弹性动力学与微极线弹性动力学的变分原理及其在振动分析中的应用,博士论文,清华大学工程力学系,北京(1984).
    [29] 邢京堂、郑兆昌,应用广义哈氏原理重看NeWmark与其它时间递推公式,上海力学,6(1)(1985),19-2 8.
    [30] Xing Jing-tang,Finite element-substructure method for dynamic analysis of coupled fluid-solid interaction problems,Proc.ojlnt.Conf.on Comp.Mech.,At.ri S N,Yagawa G,Ed.Springer-Verlag,Tokyo,(1986),IXIX117-IX122.
    [31] Xing Jing-tang,Du Qing-hua and Zheng Chao-chang,The displacement finite element formulation of dynamic analysis of fluid-structure interaction problems and substructure-subdomain techniques,Proc.of Int.Conf.on Vib.Probs,in Engng.,Du Qinghua,Ed.Xi'an Jiaotong University Press,Xi'an,453-457.
  • 加载中
计量
  • 文章访问数:  2435
  • HTML全文浏览量:  169
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  1988-06-28
  • 刊出日期:  1992-09-15

目录

    /

    返回文章
    返回