单侧障碍问题解梯度的Hölder连续性*
The Holder Continuity for the Gradient of Solutions to One-Sided Obstacle Problems
-
摘要: 对1
G{∇v·A(x,u,∇u)+vB(x,u,∇u)}dx≥0,∀v∈(G),v≥ψ-u单侧障碍问题解梯度的Hölder连续性.
Abstract: There is a gap in case 1<p<2 to the C1+a regularity for solutions of variational inequalities with degenerate ellipticity.In this paper, basad on the fundamental of the C0+a. reglarity of solutions,the Holder continuity for the gradient of solutions is proved in case 1<p<2 to a one-sided obstacle problem for variational inequalities ∫G{∇v·A(x,u,∇u)+vB(x,u,∇u)}dx≥0,(∀v∈(G),v≥ψ-u).-
Key words:
- variational inequality /
- obstacle problem /
- gradient /
- Hǒlder continuity
-
[1] Lindqvist,P.,Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity,Nonlinear Anal.T.M.A.,12(1988),1245-1255. [2] 梁玺廷、于鸣岐,一个障碍问题解梯度的HoöLder连续性,数学杂志,(4)(1991). [3] Norando,D.,C1,local regularity for a class of quasilinear elliptic variational inequalities,Bull.U.M.I.,Ser.Ⅵ,V-C(1986),281-292. [4] Michael,J.H.and W.P.Zimer,Interior regularity for solution to obstacle problems,Nonlinear Anal.T.M.A.,10(1986),1427-1448. [5] Di Benedetto,E.,C(1+α)local regularity of weak solutions of degenerate elliptic equations,Nonlinear Anal.T.M.A.,7(1983),827-850. [6] Giaquinta,G.,Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,Princeton Univ.Press,Princeton(1983). [7] Meyers;N.G.,Mcan oscillation over cubes and Hölder continuity,Proc.Amer.Math.Soc.,15(1964),717-721. [8] Giaquinta,G.,Remarks on the regularity of weak solutions to some variational inequalities,Math.Z.,177(1981),15-31.
计量
- 文章访问数: 2400
- HTML全文浏览量: 186
- PDF下载量: 476
- 被引次数: 0