负阻尼周期运动的经过时间
Elapsed Time of Periodic Motion with Negative Damping
-
摘要: 初始时作周期运动的系统被负阻尼作用逐渐托出势能井,其周期运动的经过时间由多重变量展开解得.一强非线性系统的算例表明其结果近似性好且计算简便.Abstract: An initially periodic motion is gradually raised out of the potential well by the effect of negative damping. The elapsed time when the motion ceases to be periodic is obtained by multiple variable expansions. An example of a strictly nonlinear system shows the result has a good approximation and is easy to calculate.
-
Key words:
- singular perturbation /
- multiple scale /
- nonlinear oscillators /
- asymptotic analysis
-
[1] Li Y, P. and J. Kevorkian, The effects of wiggler taper rate and signal field gain rate in free-electron lasers, IEEE J. Quantum Electron, 24(1988), 598-608. [2] Kuzmak, G. E., Asymptotic solutions of nonlinear second order differential equations with variable coefficients, P. M. M., 23(1959), 515-526. [3] Luke, J. C., A perturbation method for nonlinear dispersive wave problems, Proc. Roy. Soc.,Set. A, 292(1966), 403-412. [4] 藏世强、庄峰青,一类非线性振动系统的渐近解,中国科学,A辑,(1) (1986),34-40. [5] Li, Y. P., Free electron lasers with variable parameter wigglers, a strictly nonlinear oscillator with slowly varying parameters, Ph. D. dissertation, Univ. of Wash., Seattle, WA(1987) ; Dept. Appl. Math., UW, Tech. Rep. 87-2(1987).
计量
- 文章访问数: 2101
- HTML全文浏览量: 102
- PDF下载量: 553
- 被引次数: 0