拟线性常微分方程组边值问题解的估计
The Estimation of Solution of the Boundary Value Problem of the Systems for Quasi-Linear Ordinary Differential Equations
-
摘要: 本文研究拟线性常微分方程组边值问题x′=f(t,x,y,ε),x(0,ε)=A(ε) εy″=g(t,x,y,ε)y′+h(t,x,y,ε) y(0,ε)=B(ε),y(1,ε)=C(ε)的奇摄动。其中x,f,y,h,A,B和C均属于Rn,g是n×n矩阵函数。在适当的条件下,利用对角化技巧和不动点定理证明解的存在,并估计了余项.Abstract: This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equations x'=f(t,x,y,ε),x(0,ε)=A(ε) εy"=g(t,x,y,ε)y'+h(t,x,y,ε) y(0,ε)=B(ε),y(1,ε)=C(ε) where x,f, y, h, A, B and C all belong to Rn, and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
-
[1] 林宗池、林苏榕,拟线性常微分方程组边值问题的奇摄动,应用数学和力学,11(2) (1990),969-976. [2] 林宗池,微分不等式理论和对角化技巧在奇摄动问题中的应用,《第二届全国近代数学和力学讨论会文集》.中国力学会.上海(1987).37-39 [3] Smith, D. R.,Singular Perturbation Theory, An Introduction with Applications, Cambridge University Press, Cambridge (1985). [4] Howes, F. A. and R. E. O' Malley, Jr., Singular perturbation of semilinear second order systems, Proc. Conz. on O. D. E. and P. D. E., Bundee (1978), 131-150, Lecture Notes in Math., Springer(1980), 327. [5] Lin Zong-chi, The higher order approximation of solution of quasilinear second order systems for singular perturbation, Chin. Ann. Math., 8B,3(1987), 357-363. [6] Chang, K. W., Diagonalization method for a vector boundary problem of singular perturbation type, J. Math. Anal. Appl., 48(1974), 652-665.
计量
- 文章访问数: 2307
- HTML全文浏览量: 115
- PDF下载量: 635
- 被引次数: 0