非奇异阵特征极值和条件数的近似计算
On the Approximate Computation of Extreme Eigenvalues and the Condition Number of Nonsingular Matrices
-
摘要: 本文从共轭梯度法的公式推导出对称正定阵A与三对角阵B的相似关系,B的元素由共轭梯度法的迭代参数确定.因此,对称正定阵的条件数计算可以化成三对角阵条件数的计算,并且可以在共轭梯度法的计算中顺带完成.它只需增加O(s)次的计算量,s为迭代次数.这与共轭梯度法的计算量相比是可以忽略的.当A为非对称正定阵时,只要A非奇异,即可用共轭梯度法计算ATA的特征极值和条件数,从而得出A的条件数.对不同算例的计算表明,这是一种快速有效的简便方法.Abstract: From the formulas of the conjugate gradient, a similarity between a symmetric positive definite(SPD) matrix A and a tridiagonal matrix B is obtained.The elements of the matrix B are determined by the parameters of the conjugate gradient.The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B.The approximation of extreme eigenvalues of A can be obtained as a ‘by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient.If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on ATA.Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
-
Key words:
- symmetric positive definite matria /
- conjugate gradient /
- eigenvalues /
- condition number
-
[1] Meijerink,J.A.and H.A.Van der Vorst,An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix,Math.Comput.,31,137(1977),148-162. [2] Concus,P.,G.H.Golub and D.P.O'Leary,Sparse Matrix Computations,Ed.by J.R.Bunch and D.J.Rose,Academic Press,New York(1976),309-332. [3] Wong,Y.S.,Preconditioned conjugate gradient methods applied to certain symmetric linear systems,Intern.J.Computer Math.,19(1986),177-200. [4] 郭富印等,《FORTRAN算法汇编》,第三分册.国防工业出版社,北京(1982),37-38. [5] 雷光耀,ICCG及MICCG的讨论与改进,应用数学学报(待发表). [6] Lei,G.Y.,Block preconditioned conjugate gradient method for large sparse systems,Technical Report 050,Institute of Applied Mathematics,Academia Sinica,Beijing(1989),1-18.
计量
- 文章访问数: 2033
- HTML全文浏览量: 54
- PDF下载量: 542
- 被引次数: 0