非线性球形薄膜的膨胀失稳
Tensile Instability of Nonlinear Spherical Membrane with Large Deformation
-
摘要: 本文应用分支理论研究了非线性球形薄膜在轴对称大变形膨胀过程中的失稳问题.证明了所论非线性边值问题的奇点只能是单重极限点,并讨论了载荷和材料两个参数对球形薄膜平衡状态及其稳定性的影响.Abstract: The problem on instability of nonlinear spherical membrane with large axisvmmelric tensile deformations is investigated by using the bifurcation theory. It is proved that all singular points of the nonlinear boundary value problem must be simple limit points. The effect of loading and material parameters on the equilibrium state and its stability is discussed.
-
Key words:
- hyperelasticity /
- bifurcation theory /
- effect of multiple parameters
-
[1] Adkins,J.E.and R.S.Rivlin.Large elastic deformations of isotropic materials,part IX;Phil.Trans.Roy.Soc.,A,244(1952),505-531. [2] Green,A.E.and J.E.Adkins.Large Elastic Deformations and Non-Linear Continuum Mechanics,Chap.4,Clarendon Press(1960). [3] Eringen,A.C.,Non-Linear Theory of Continuous Media,Chap.6 McGraw-Hill Book Company.Inc.(1962). [4] Hart-Smith,L.J.,Elasticity parameters for finite deformations of rubber-like materials.ZAMP,17(1966).608-626. [5] Alexander,H.,Tensile instability of initially spherical balloons,Internat.J.Engrg.Sci.,9(1971).151-162. [6] Sewell,M.J.,Some mechanical examples of catastrophe theory.Bull.Inst.Math.Appl.,12(1976).163-172. [7] Haughton.D.M.and R.W.Ogden.On the incremental equations in non-linear clasticity,II.Bifurcation of pressurized spherical shell,J.Mech.Phys.Solids.26(1978),111-138. [8] 朱正佑、程昌钧,《分支问题的数值计算方法》,第三章.兰州大学出版社(1989). [9] Yang,W.H.and W.W.Feng.On axisymmetrical deformations of non-linear membranes.Trans.ASME.J.Appl.Mech.,Ser.E.92(1970).1002-1001. [10] Erdelyi A.,Higher Transcendental Functions,Chap.3,Vol.I.,McGraw-Hill Book Company,Inc.(1953).
计量
- 文章访问数: 1899
- HTML全文浏览量: 114
- PDF下载量: 450
- 被引次数: 0