摘要:
本文提出求锥壳方程通解的另一种方法——位移法.文中根据文献[1]给出的壳体基本关系,导出锥壳一般弯曲问题的位移方程组,然后通过引入一个位移函数U(s,θ)(在极限情况下,就变为对于圆柱壳所引入的位移函数),从而将锥壳基本方程组化成关于位移函数U(s,θ)的8阶可解偏微分方程(控制微分方程).对于一般弯曲问题,该方程的一般解以广义超几何函数给出;对于轴对称弯曲问题,用Bessel函数给出其一般解.作为锥壳位移解法的应用,讨论了Winkler地基模式上的锥壳的轴对称弯曲问题,给出数值结果.
Abstract:
In this paper, the displacement solution method of the conical shell is presented. From the differential equations in displacement form of conical shell and by introducing a displacement function, U(s,θ),the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function. As special cases of this paper, the displacement function introduced by V. Z. Vlasov in circular cylindrical shell, the basic equation of the cylindrical shell and that of the circular plate are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell is reduced to finding the displacement function U(s,θ),and the general solution of the governing equation is obtained in generalized hypergeometric function, For the axisymmetric bending deformation of the conical shell, the general solution is expressed in the Bessel functionOn the basis of the governing equation obtained in this paper, the differential equation of conical shell on the elastic foundation(A Winkler Medium) is deduced, its general solutions are given in a power series, and the numerical calculations are carried out.