连续时间LQ控制主要本征对的算法
On the Computation of the Main Eigen-Pairs of the Continuous-Time Linear Quadratic Control Problem
-
摘要: 本文首先提出了离散时间LQ控制的本征值方程当△t→0时怎样退化成为连续时间LQ控制的本征值方程.在建立了分离出的n阶连续时间的本征值方程,并保证了其本征值必定都在左半平面后,本文提出计算其最靠近于虚轴的若干个本征对,可以通过Ae=eA的矩阵变换.Ae的本征值全在单位圆之内.本征向量不变,至于本征值则只要做一次对数运算就可以求得原阵的本征值.Ae阵的最接近于单位圆的若干个本征对的算法,可以通过共轭子空间迭代解解决之.Abstract: The degeneration of the eigenvalue equation of the discrete-time linear quadratic control problem to the continuous-time one when Δt→0 is given first. When the continuous-time n-dimensional eigenvalue equation, which has all the eigenvalues located in the left half plane, has bee ft reduced from the original In-dimensional one, the present paper proposes that several of the eigenvalues nearest to the imaginary axis be obtained by the matrix transformation Ae=eA.All the eigenvalues of Ae are in the unit circle, with the eigenvectors unchanged and the original eigenvalues can be obtained by a logarithm operation. And several of the eigenvalues of Ae nearest to the unit circle can be calculated by the dual subspace iteration method.
-
Key words:
- linear quadratic control /
- eigenvalue /
- eigenvector /
- eigen-pairs
-
[1] 钟万勰,离散LQ控制问题的本征解,计算结构力学与应用,2 (1990). [2] 钟万勰,连续时间LQ调节器的两个代数里卡提方程及本征值问题,大连理工大学学报,1 (1990). [3] Wilkinson, J.H, and C, Reinseh, Linear Algebra, Springer-Verlag (1971). [4] 钟万勰,林家浩,不对称实矩阵的本征对共扼子空间迭代法,即将在《计算结构力学与应用》中发表. [5] Wybou:ne, B.G.,Classical Groups of Physicists, John Wiley and Sons(1974);中译本:《典型群及其在物理学中的应用》,科学出版社,北京(1982). [6] 钟万勰,连续时间定常LQ控制问题的代数里卡提方程的迭代求解,大连理工大学工程力学研究所研究报告,60-3005. [7] Laub, A, J.,Numerical linear algebra aspects of control design computations,IEEE Trans, Automat.Contr,AC-30,2(1985). [8] Fran klin, J.N,Matrix Theory Prentice-Hall (1968).
计量
- 文章访问数: 2034
- HTML全文浏览量: 103
- PDF下载量: 623
- 被引次数: 0