留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横观各向同性含液饱和多孔介质中应力波传播的特征分析

刘颖 刘凯欣

刘颖, 刘凯欣. 横观各向同性含液饱和多孔介质中应力波传播的特征分析[J]. 应用数学和力学, 2004, 25(6): 599-606.
引用本文: 刘颖, 刘凯欣. 横观各向同性含液饱和多孔介质中应力波传播的特征分析[J]. 应用数学和力学, 2004, 25(6): 599-606.
LIU Ying, LIU Kai-xin. Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 599-606.
Citation: LIU Ying, LIU Kai-xin. Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 599-606.

横观各向同性含液饱和多孔介质中应力波传播的特征分析

基金项目: 国家自然科学基金资助项目(10232040,0302002);国家杰出青年科学基金资助项目(10025212)
详细信息
    作者简介:

    刘颖(1973- ),女,山东潍坊人,讲师,博士(联系人.Tel:+86-10-62765844;E-mail:y_liu@mail.china.com).

  • 中图分类号: O313

Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media

  • 摘要: 根据广义特征理论,对横观各向同性含液饱和多孔介质中应力波传播特性进行了特征分析.给出了特征曲面的微分方程以及沿次特征线的相容条件,得到了波阵面的解析表达式.详细地讨论了应力波在横观各向同性含液饱和多孔介质中传播时,其速度曲面和波阵面的形状及性质.分析结果亦表明,纯固体中应力波传播的特征方程,是含液饱和多孔介质中应力波特征方程的特例.
  • [1] Ting T C T. Characteristic forms of differential equations for wave propagation in nonlinear media[J].J Appl Mech,1981,48(4):743—748. doi: 10.1115/1.3157726
    [2] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅰ:Low frequency range[J].J Acoust Soc Am,1956,28(2):168—178. doi: 10.1121/1.1908239
    [3] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅱ:High frequency range[J].J Acoust Soc Am,1956,28(2):179—191. doi: 10.1121/1.1908241
    [4] Biot M A. Mechanics of deformation and acoustic propagation in porous dissipative media[J].J Appl Phys,1962,33(4):1482—1498. doi: 10.1063/1.1728759
    [5] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am, 1962,34(9):1254—1264. doi: 10.1121/1.1918315
    [6] Plona T J. Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies[J].Appl Phys Lett,1980,36(4):259—261. doi: 10.1063/1.91445
    [7] Auriault J L, Borne L,Chambon R. Dynamics of porous saturated media, checking of the generalized law of Darcy[J].J Acoust Soc Am,1985,77(5):1641—1950. doi: 10.1121/1.391962
    [8] Johnson D L. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J].J Fluid Mech,1987,176(3):379—402. doi: 10.1017/S0022112087000727
    [9] Schmitt P D. Acoustic multipole logging in transversely isotropic poroelastic formation[J].J Acoust Soc Am,1989,86(6):2397—2421. doi: 10.1121/1.398448
    [10] Sharma M D,Gogna M L. Wave propagation in anisotropic liquid-saturated porous solids[J].J Acoust Soc Am,1991,90(2):1068—1073. doi: 10.1121/1.402295
    [11] Liu Y, Liu K,Tanimura S. Wave propagation in transversely isotropic fluid-saturated poroelastic media[J].JSME International Journal,2002,45(3): 348—355. doi: 10.1299/jsmea.45.348
    [12] Simon B R,Zienkiewicz O C,Paul D K. An analytical solution for the transient response of saturated porous elastic solids[J].Intel J Numer Anal Mat,1984,8(4):381—398. doi: 10.1002/nag.1610080406
    [13] José M Carcione. Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation[J].J Acoust Soc Am,1996,99(5): 2665—2666.
    [14] 丁启财. 固体中的非线性波[M]. 北京:中国友谊出版社,1985.
    [15] Courant R,Hilbert D. Methods of Mathematical Physics,Ⅱ[M].New York:Wiley-Interscience,1962.
    [16] Moon F C. Wave surfaces due to impact on anisotropic plates[J].J Compos Mater,1972,6(1):62—79. doi: 10.1177/002199837200600106
  • 加载中
计量
  • 文章访问数:  2787
  • HTML全文浏览量:  151
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-12-03
  • 修回日期:  2003-11-18
  • 刊出日期:  2004-06-15

目录

    /

    返回文章
    返回