留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意形状孔口双边裂纹平板的应力强度因子计算

王元汉

王元汉. 任意形状孔口双边裂纹平板的应力强度因子计算[J]. 应用数学和力学, 1990, 11(8): 677-686.
引用本文: 王元汉. 任意形状孔口双边裂纹平板的应力强度因子计算[J]. 应用数学和力学, 1990, 11(8): 677-686.
Wang Yuan-han. Stress Intensity Factors of a Plate with Two Cracks Emanating from an Arbitrary Hole[J]. Applied Mathematics and Mechanics, 1990, 11(8): 677-686.
Citation: Wang Yuan-han. Stress Intensity Factors of a Plate with Two Cracks Emanating from an Arbitrary Hole[J]. Applied Mathematics and Mechanics, 1990, 11(8): 677-686.

任意形状孔口双边裂纹平板的应力强度因子计算

Stress Intensity Factors of a Plate with Two Cracks Emanating from an Arbitrary Hole

  • 摘要: 本文采用Muskhclishvili弹性力学的复变函数和边界配位方法对不同形状孔口双边裂纹问题进行了研究,计算了圆孔、椭圆孔、矩形孔、菱形孔等不同形状孔口双边裂纹,以及Ⅰ型和复合型等不同类型断裂试件的应力强度因子,本文方法简单方便,精度较高,与某些已有计算结果的问题比较,本文方法所得的结果是令人满意的.同时,本方法可以应用于不同几何形状和加载条件下的孔口双边裂纹有限大板的计算,是解这一类问题的一致有效方法.
  • [1] Bowie,O.L.,Analysis of an infinite plate containing redial cracks originating at the boundary of an infinite circular hole,Journal of Mathematics and Physics,35(1956),60-71.
    [2] Nishitani,M.and M.Isida,Stress intensity factor for the tension of an infinite plate containing an elliptical hole with two symmetrical edge cracks,Transactions of the Japanese Society for Mechanical Engineers,212(1969).
    [3] Neal,D.M.,Stress intensity factors for cracks emanating from rectangular cutouts,International Journal of Fracture Mechanics,6(1970),393-400.
    [4] Newman,J.C.,An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries,NASA TN D-6376(1971).
    [5] Muskhelishvili,N.I.,Some Basic Problems of Mathematical Theory of Elasticity,Second Englihed ed.,Noordhoff(1975).
    [6] Chen Yi-zhou and Chen Yi-heng,A mixed boundary problem for a finite internally cracked plate,Engineering Fracture Mechanis,14(1981),741-751.
    [7] Wilson,W.K.,Numerical method for determining stress intensity factors ofan interior crack in a finite plate,ASME Journal of Basic Engineering,93(1971),685-690.
    [8] Kanninen,M.F.and C.H.Popelar,Advanced Fracture Mechanics,Oxford(1985).
    [9] Tada,H.,P.C.Paris and G.R.Irwin,The Stress Analysis of Cracks Handbook,Del Research Coorporation,Pennsylvania(1973).
  • 加载中
计量
  • 文章访问数:  1907
  • HTML全文浏览量:  149
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  1988-11-10
  • 刊出日期:  1990-08-15

目录

    /

    返回文章
    返回