留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有无穷时滞的细胞神经网络的全局稳定性分析

张继业

张继业. 具有无穷时滞的细胞神经网络的全局稳定性分析[J]. 应用数学和力学, 2004, 25(6): 627-634.
引用本文: 张继业. 具有无穷时滞的细胞神经网络的全局稳定性分析[J]. 应用数学和力学, 2004, 25(6): 627-634.
ZHANG Ji-ye. Global Stability Analysis in Cellular Neural Networks With Unbounded Time Delays[J]. Applied Mathematics and Mechanics, 2004, 25(6): 627-634.
Citation: ZHANG Ji-ye. Global Stability Analysis in Cellular Neural Networks With Unbounded Time Delays[J]. Applied Mathematics and Mechanics, 2004, 25(6): 627-634.

具有无穷时滞的细胞神经网络的全局稳定性分析

基金项目: 国家自然科学基金资助项目(10272091)
详细信息
    作者简介:

    张继业(1965- ),男,四川夹江人,教授,博士(Tel:+86-28-87634355.Fax:+86-28-87600868;E-mail:jyzhang@home.swjtu.edu.cn).

  • 中图分类号: O317;TP711

Global Stability Analysis in Cellular Neural Networks With Unbounded Time Delays

  • 摘要: 对具有无穷时滞的细胞神经网络平衡点的存在性、唯一性和全局渐近稳定性进行了分析.在放弃了激活函数的有界性、单调性和可微性假设的情况下,得到了系统的平衡点的存在性条件.利用向量Liapunov函数法的思想,构造适当的含有变时滞和无穷时滞的微分-积分不等式,通过对微分-积分不等式的稳定性分析,得到了神经网络系统的全局渐近稳定的充分条件.
  • [1] Chua L O, Yang L. Cellular neural networks: theory [J].IEEE Trans Circuits Syst,1988,35(10):1257—1272. doi: 10.1109/31.7600
    [2] Chua L O, Yang L. Cellular neural networks: applications[J].IEEE Trans Circuits Syst,1988,35(10):1273—1290. doi: 10.1109/31.7601
    [3] Chua L O.CNN: A Paradigm for Complexity[M].Singapore: World Scientific, 1998.
    [4] Arik S, Tavanoglu V. Equilibrium analysis of delayed CNNs[J].IEEE Trans Circuits Syst Ⅰ,1998,45(2):168—171. doi: 10.1109/81.661684
    [5] Civalleri P P, Gill L M, Pandolfi L. On stability of cellular neural networks with delay[J].IEEE Trans Circuits Syst Ⅰ, 1993,40(3):157—164. doi: 10.1109/81.222796
    [6] Roska T, Wu C W, Balsi M,et al. Stability and dynamics of delay-type general and cellular neural networks[J].IEEE Trans Circuits Syst,1992,39(6):487—490. doi: 10.1109/81.153647
    [7] Roska T, Wu C W, Balsi M,et al. Stability of cellular neural networks with dominant nonlinear and delay-type templates[J].IEEE Trans Circuits Syst,1993,40(4):270—272. doi: 10.1109/81.224300
    [8] Arik S, Tavanoglu V. On the global asymptotic stability of delayed cellular neural networks[J].IEEE Trans Circuits Syst Ⅰ,2000,47(4):571—574. doi: 10.1109/81.841859
    [9] ZHANG Ji-ye.Absolutely exponential stability in delayed cellular neural networks[J].Internat J Circuit Theory Appl,2002,30(4):395—409. doi: 10.1002/cta.182
    [10] Lu H. On stability of nonlinear continuous-time neural networks with delays[J].Neural Networks,2000,13(10):1135—1143. doi: 10.1016/S0893-6080(00)00076-9
    [11] 曹进德, 林怡平.一类时间滞后神经网络模型的稳定性[J].应用数学和力学,1999,20(8):851—855.
    [12] Zhang Q, Ma R, Xu J. Stability of cellular neural networks with delay[J].Electronics Letters,2001,37(9):575—576. doi: 10.1049/el:20010411
    [13] Gopalsamy K, He X. Stability in asymmetric Hopfield nets with transmission delays[J].Physica D,1994,76:344—358. doi: 10.1016/0167-2789(94)90043-4
    [14] Sree Hari Rao V, Phaneendra Bh R M. Global dynamics of bidirectional associative memory neural networks involving transmission delays and dead zones[J].Neural Networks,1999,12(3):455—465. doi: 10.1016/S0893-6080(98)00134-8
    [15] ZHANG Ji-ye,JIN Xue-song.Global stability analysis in delayed Hopfield neural networks models[J].Neural Networks,2000,13(7):745—753. doi: 10.1016/S0893-6080(00)00050-2
    [16] ZHANG Ji-ye, YANG Yi-ren.Global stability analysis of bidirectional associative memory neural networks with time delay[J].Internat J Circuit Theory Appl,2001,29(2):185—196. doi: 10.1002/cta.144
    [17] ZHANG Ji-ye. Global stability analysis in delayed cellular neural networks[J].Computers and Mathematics With Applications,2003,45(10/11):1707—1720. doi: 10.1016/S0898-1221(03)00149-4
    [18] Zhang Y, Peng P A, Leung K S. Convergence analysis of cellular neural networks with unbounded delay[J].IEEE Trans Circuits Syst Ⅰ,2001,48(6):680—687. doi: 10.1109/81.928151
    [19] Forti M, Tesi A. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J].IEEE Trans Circuits Syst Ⅰ,1995,42(7):354—366. doi: 10.1109/81.401145
    [20] 舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社,2001.
    [21] Siljiak D D.Large-Scale Dynamic Systems—Stability and Structure[M]. New York: Elsevier North-Holland, Inc,1978.
    [22] 张继业,杨翊仁,曾京.无限维关联系统的弦稳定性[J].应用数学和力学,2000,21(7):715—720.
    [23] ZHANG Ji-ye. Globally exponential stability of neural networks with variable delays[J].IEEE Trans Circuits Syst Ⅰ,2003,50(2):288—291.
    [24] Hale J.Theory of Functional Differential Equations[M].New York:Springer-Verlag, 1977.
  • 加载中
计量
  • 文章访问数:  2360
  • HTML全文浏览量:  125
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-02-28
  • 修回日期:  2003-12-05
  • 刊出日期:  2004-06-15

目录

    /

    返回文章
    返回