广义神经传播型非线性拟双曲方程解的爆破
Blow-up of Solutions of Nonlinear Pseudo-Hyperbolic Equations of Generalized Nerve Conduction Type
-
摘要: 本文讨论了广义神经传播型非线性拟双曲方程utt-Δut=F(x,t,u,∇u,ut,∇ut)分别具Neumann边界和Dirichlet边界的两类混合问题.在非线性部分F(x,t,u,∇u,u1,∇u1)和初值满足某些条件时,我们得到了解的爆破性质.Abstract: This paper deals with the two types of mixed problems with respect to Neumann boundary and Dirichlet boundary for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type utt-Δut=F(x,t,u,∇u,ut,∇ut) when the nonlinear part F(x,t,u,∇u,ut,∇ut) and the initial values satisfy some conditions, the blow-up properties of the solytions are obtained.
-
[1] Pao,C.V.,A mixed initial boundary-value problem arising in neurophysiology,J.Math.Anal,Appl.,52(1975),105-119. [2] Ball,J.M.,Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,Quant.J.Math.,Oxford,28(1977),473-486. [3] 刘亚成、刘大成,三维广义神经传播型非线性拟双曲方程(组)的整体强解,数学学报,和,4(1987),535-547. [4] Shatah,J.,Normal forms and quadratic nonlinear Klein-Gordon equations,Comm.Pure Appl.Math.,38(1985),685-696. [5] Schaeffer,J.,Finite-time blow-up for utt-△u=H(ur,ut) in two space dimensions,Comm.PDE,11,5(1986),513-543. [6] Rammaha,M.A.,Finite-lime blow-up for nonlinear wave equations in high dimensions,Comm.PDE,12,6(1987),677-700. [7] Kato,T.,Blow up of solutions of some nonlinear hyperbolic equations,Comm.Pure Appl.Math.,33(1980),501-505. [8] Klainerman,S.and G.Ponce,Global,small amplitude solutions to nonlinear evolution equations,Comm.Pure Appl.Math.,36(1983),133-141.
计量
- 文章访问数: 1864
- HTML全文浏览量: 116
- PDF下载量: 684
- 被引次数: 0