数值求解对流扩散方程有限分析方法的稳定性与收敛性
The Stability and Convergence of the Finite Analytic Method for the Numerical Solution of Convective Diffusion Equation
-
摘要: 本文利用椭圆型偏微分方程所满足的最大最小值原理研究有限分析方法,证明了数值求解对流扩散方程有限分析方法的稳定性与收敛性,顺便指出了前人理论中的错误.Abstract: In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
-
[1] Chen,C.J.,H.Naseri-Neshat and K.S.Ho,Finite analytic numerical solution of heat transfer in two-dimensional cavity flow,Int.J.Numerical Heat Transfer,4(1981),179-197. [2] Chen,C.J.and H.C.Chen,Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations,Journal of Computational Physics,53,2(1984) 209-226. [3] 陈景仁.《流体力学及传热学》,国防工业出版社(1984). [4] Protter,M.H.and H.F.Weinberger,Maximum Principles in Differential Equations,Springer-Verlag New York Berlin Heidelberg Tokyo(1984). [5] Zeng Xiang-jin and Li Wei,The stability and convergence of FAM for unsteady two-dimensional convective transport equation,International Symposium on Refined Flow Modelling and Turbulence Measurements,The University of Iowa,Iowa City,Iowa,USA.Sep.(1985),16-18. [6] 吴江航、韩庆书.《计算流体力学的理论、方法及应用》.科学出版社(1988).
计量
- 文章访问数: 1865
- HTML全文浏览量: 81
- PDF下载量: 734
- 被引次数: 0