正态变差系数的经典限
Classical Limits for the Coefficient of Variation for the Normal Distribution
-
摘要: 本文推导了正态变差系数的经典精确限.为了满足工程实践的需要,利用Odeh和Owen的计算方法及Brent算法,给出了高精度的可手算的近似限.对不同的置信度γ及样本大小n=1(1)30,40,60,120,样本变差系数ε=0.01(0.01)0.20,计算了正态变差系数的经典精确限表.本文指出,当n≤8,ε≤0.20时,经典精确限Cu略大于Fiducial精确限Cu,F.当n>8.ε≤0.20时.Cu-Cu,F<5×10-6.Abstract: The exact classical limits for the coefficient of variation c for the normal distribution are derived.The hand-calculating approximated classical limits for c having high accuracy are given to meet practical engineering needs.Using Odeh and Owen's computational method and Brent's algorithm,the tables for the r-upper exact classical limits of coefficient of variation for normal distribution are calculated for the different confidence coefficient γ,the sample size n=1(1)30,40,60,120,the sample coefficient of variation ε=0.01(0.01)0.20.It is shown that if n<8,ε<0.20,then the γ-upper exact classical limits cu for c are slightly higher than the exact fiducial limits cu,F for c if.n>8,c<0.02,then cu-cu,F<5×10-6.
-
[1] 周源泉,正态变差系数的Fiducial及Bapes限,机械工程学报,22,3(1986),67-74. [2] Mckay,A.T.,Distribution of the coefficient of variation and extended t-distribution,J.R.Statist.Soc.,95(1932),695-698. [3] Pearson,E.S.,Comparison of A.T.Mckay's approximation with experimental sampling results,J.R.Statist.Soc.,95(1932),703-704. [4] Fieller,E.C,A numerical test of the adequacy of A.T.Mckay's approximation,J.R.Statist.Soc.,95(1932),699-702. [5] Koopmans,L.H.,D.B.Owen and J.I.Rosenblatt,Confidence intervals for the coefficient of variation for the normal and lognormal distribution,Biometrika,51(1964),25-32. [6] Johnson,N.L.and B.L.Welch,Application of the noncentral t-distribution Biometrika,27(1940),362-381. [7] 周源泉,正态可靠寿命的玩yes限、Fiducial限及经典限,电子学报,14,2(1986),46-52. [8] 山内二郎,《统计数值表》,JSA(1972). [9] Odeh,R.E.and D.B.Owen,Tables for Normal Tolerance Limits,Sampling Plans and Screening,Dekker(1980). [10] Brent,R.P.,An algorithm with guaranteed convergence for finding a zero of a function,Comput.J.,14(1971),422-425.
计量
- 文章访问数: 1773
- HTML全文浏览量: 107
- PDF下载量: 524
- 被引次数: 0