On the Numerical Solution of Quasilinear Wave Equation With Strong Dissipative Term
-
摘要: 研究了一类拟线性波方程的数值解.构造了带强耗散项的拟线性波方程的三级差分格式,并证明其收敛性,估计了差分解的误差.最后给出数值例子.Abstract: The numerical solution for a type of quasilinear wave equation is studied.The three-level difference scheme for quasi-linear waver equation with strong dissipative term is constructed and the convergence is proved.The error of the difference solution is estimated.The theoretical results are controlled on a numerical example.
-
Key words:
- periodical problem /
- quasilinear wave equation /
- difference scheme /
- numerical solution
-
[1] Lagnese J L.General boundary-value problems for differential equations of Sobolev type[J].SIAM, J Math Anal,1972,3:105—119. doi: 10.1137/0503013 [2] Leopold H.Periodic solutions to a one-dimensional strongly nonlinear wave equation with strong dissipation[J].Czechoslovak Math J,1985,35(110):278—293. [3] Webb G F.Existence and asymptotic behavior for a strongly damped nonlinear wave equation[J].Canad J Math,1980,32:631—643. doi: 10.4153/CJM-1980-049-5 [4] Lebedev V I.The method of difference for the equations of Sobolev type[J].Dokl Acad Sci USSR,1957,114:1166—1169. [5] Amiraliyev G M.Towards the numerical solution of the perodical on time problem for pseudo-parabolic equation[J].Numerical Methods of Analysis BAKU State University,1988,3—8. [6] Amiraliyev G M.On difference schemes for problems of the theory of dispersive waves[J].Soviet Math Dokl,1991,42:235—238. [7] Amiraliyev G M.Investigation of the difference schemes for the quasi-linear Sobolev equations[J].Differential Equations,1987,23:1453—1455.(in Russian)
计量
- 文章访问数: 2764
- HTML全文浏览量: 134
- PDF下载量: 614
- 被引次数: 0