常差分方程奇异摄动问题的渐近方法
Asymptotic Method for Singular Perturbation Problem of Ordinary Difference Equations
-
摘要: 在本文中,我们讨论如下差分方程问题(Pε):(L.y)k≡εy(k+1)+a(k,ε)y(k)+b(k,ε)y(k-1)=f(k,ε)(1≤k≤N-1)B1y≡-y(0)+c1y(1)=a,B2y≡-c2y(N-1)+y(N)=β这里ε是一个小参数,c1,c2,a,β为常数,a(k,ε),b(k,ε),f(k,ε)(1≤k≤N)是k和ε的函数.首先,我们讨论了常系数的情形;接着引进伸长变换对变系数的情形进行了讨论,给出了解的一致渐近展开式;最后给出了一个数值例子.Abstract: This paper is taken up for the following difference equation problem (Pε):(L.y)k≡εy(k+1)+a(k,ε)y(k)+b(k,ε)y(k-1)=f(k,ε)(1≤k≤N-1)B1y≡-y(0)+c1y(1)=a,B2y≡-c2y(N-1)+y(N)=β where e is a small parameter, c1, c2,α,β constants and a(kε),b(kε),ƒ(kε)(1≤k≤N) functions of k and ε. Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (Pa) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
-
[1] Hildebrand,F.B.Finite Difference Equations and Simulations,Prentice Hall,Englewood Cliffs(1968). [2] Gadzow,J.A.and H,R.Marions,Discrete-Time and Computer Control Systems,Prentice Hall,Englewood Cliffs(1970). [3] Kuo,B.C.Digital Control Systems,SRL Publ.Com.,Champaign(1977). [4] Cadzow,J.A.Discrete-Time System:An Introduction with Interdisciplinary Applications Prentice Hall,Englewood Cliffs(1973). [5] Bishop,A.B.,Introduction to Discrete Linear Controls:Theory and Application,Academic Press,New York(1975). [6] Dorato,P.and A.H.Levis,Optimal linear regulators:the discrete-time case,IEEE Trans On Ant.Control,AC-16(1971),613-620. [7] Comstock,C.and G.C.Hsiao,Singular perturbations for difference equation,Rocky Mountain J.Mathematics,6(1976),561-567. [8] Naidu,D.S.and A.K.Rao,Singular perturbation analysis of discrete control systems,Lecture Notes in Math.,1154.
计量
- 文章访问数: 1763
- HTML全文浏览量: 106
- PDF下载量: 557
- 被引次数: 0