n维空间正交张量的典则表示和自由度公式
Canonical Representations and Degree of Freedom Formulae of Orthogonal Tensors in n-Dimensional Euclidean Space
-
摘要: 本文借助于正交张量特征值的特性,采用剖分的方法.利用二维正交张量典则表示,很快就构造出一般n维欧氏空间上的正交张量的典则表示.利用Cayley-Hamilton定理,求得了正交张量各主不变量之间的相关方程,从而使得正交张量特征根的求解只需要在一个阶数不大于空间维数n的一半的代数方程上进行.本文还给出了正交张量的独立参数个数——自由度的计算公式.Abstract: In this paper, with the help of the eigenvalue properties of orthogonal tensors in n-dimensional Euclidean space and the representations of the orthogonal tensors in 2-dimensional space, the canonical representations of orthogonal tensors in n-dimensional Euclidean space are easily gotten. The paper also gives all the constraint relationships among the principal invariants of arbitrarily given orthogonal tensor by use of Cayley-Hamilton theorem; these results make it possible to solve all the eigenvalues of any orthogonal tensor based on a quite reduced equation of m-th order, where m is the integer part of n/2. Finally, the formulae of the degree of freedom of orthogonal tensors are given.
-
[1] Euler,L.,Du mourement de rotation des corps solids autour d'un axe variable,Mem.Acad.Roy.Sci.et Belles-Lettres de Berlin,14(1758),154-193. [2] Richter,H.,Zur elastizitatsheorie endlicher verformungen,Math.Nachr.,8(1952),65-73;English transl.,Continuum mechanics III,Foundations of elasticity theory,C.Truesdell,ed.(1965). [3] Cosserat,E.and F.,Theorie des Corps Deformable,Hermann,Paris(1909). [4] Guo,Z.H.,Representations of orthogonal tensors,SM Archive,6(1981),451-466. [5] 郑泉水,正交张量典则表示一个新证明,江西工学院学报,4(1984),1-3 [6] 郭仲衡,《张量(理论和应用)》,科学出版社(1988).
计量
- 文章访问数: 2284
- HTML全文浏览量: 97
- PDF下载量: 553
- 被引次数: 0