凹凸算子和与积的不动点及固有元
The Fixed Point and Eigenelement of Sum and Product about Concave and Convex Operators
-
摘要: 本文获得线性半序空间正锥上α凹与-α凸算子的和与积存在不动点的充分条件,并给出了迭代程序与误差估计.还讨论了固有值与固有元之间的关系.Abstract: In this paper, we obtain the sufficient conditions under which there exists the fixed point of sum and product about α concave and-α convex operators in the positive cone of linear semi-order space, and the iterative procedure and error estimate can be given. The relation between eigenvalue and eigenelement will also be studied in this paper.
-
[1] Potter, A.J, B.,A pplications of Hilbert's projective metric to certain classes of non-ho mogeneous operators,Quart, J, Math.,Oxford,28, 2(1977),93-99, [2] 万伟勋,映射压缩的条件与Banach型不动点定理,数学学报,27, 1 (1984), 36-62, [3] 秦成林,拟齐次映象的正不动点,数学学报,27 (1984), 792-794, [4] 郭大钧,一类凹凸算子的不动点与固有值,科学通报,30 (1985), 1132-1135. [5] Ortega,J, M, and W.C, Rheinboldt,Iterative Solution of Nonlinear Equation in Several Irariables, Academic Press,New York(1970). [6] 游兆永等,两侧逼近区间松弛法,科学通报,31 (1986), 241-243, [7] Leggett, R.W.,On certain nonlinear integral equations,J, Math.Anal.Appl.,57(1977),462-468. [8] 关肇直,《泛函分析讲义》,高等教育出版社(1958),
计量
- 文章访问数: 2462
- HTML全文浏览量: 67
- PDF下载量: 476
- 被引次数: 0