摘要:
本文采用对偶线映射的方法分析了分段线性Hénon映射(x,y)→(1-a|x|+by,x),a=8/5,b=9/25吸引集的详细结构.设A和B分别是映射在第一和第三象限内的不动鞍点,本文说明:(1)映射的吸引集是B的不稳定流形UB的闭包ūB,而A的不稳定流形UA则是ūB的一个子集;(2)吸引盆是A的稳定流形SA的闭包SA,其边界是B的稳定流形SB,而SB在AA的极限集之内.文中还给出周期鞍点不稳定流形和不动鞍点不稳定流形之间的关系.文中的符号动力学记号可用以研究各个不变流形每段的动态以及各同宿点、异宿点的动态.
Abstract:
Detailed structure of the attracting set of the piecewise linear Henon mapping(x, y)→(1-a|x|+by,x)with a=8/5 and b=9/25 is described in this paper using the method of dual line mapping. Let A and B denote the fixed saddles in the first quadrant, and in the third quadrant, respectively. It is claimed that(1)the attracting set is the closure of the unstable manifold of saddle B, which includes the unstable manifold of A as its subset, and(2)the basin of attraction is the closure of the stable manifold of A, bounded by the stable manifold of B, which is in the limiting set of the stable manifold of A.Relations of the manifolds of the periodic saddles with the manifolds of the fixed point are given. Symbolic dynamics notations are adopted which renders possible the study of the dynamical behavior of every piece of the manifolds and of every homoclinic or heteroclinic point.