留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类超前型微分差分方程的有界解及其渐近性质

林宜中

林宜中. 一类超前型微分差分方程的有界解及其渐近性质[J]. 应用数学和力学, 1988, 9(6): 534-542.
引用本文: 林宜中. 一类超前型微分差分方程的有界解及其渐近性质[J]. 应用数学和力学, 1988, 9(6): 534-542.
Lin Yi-zhong. The Bounded Solution of a Class of Differential-Difference Equation of Advanced Type and Its Asymptotic Behavior[J]. Applied Mathematics and Mechanics, 1988, 9(6): 534-542.
Citation: Lin Yi-zhong. The Bounded Solution of a Class of Differential-Difference Equation of Advanced Type and Its Asymptotic Behavior[J]. Applied Mathematics and Mechanics, 1988, 9(6): 534-542.

一类超前型微分差分方程的有界解及其渐近性质

The Bounded Solution of a Class of Differential-Difference Equation of Advanced Type and Its Asymptotic Behavior

  • 摘要: 本文考虑具有扰动项的超前型微分差分方程,证明了当退化方程具有负指数阶的有界解且扰动项满足一定条件时,扰动方程也具有负指数阶的有界解.
  • [1] Doss,S.and S.K.Nasr,On the functional equation dy/dx=f(x,y(x),y(x+h)),h>0,Amer.J.Math.,75(1953),713-716.
    [2] Sugiyama,S.,On some problems of functional-differential equations With advanced argument,Proc.U.S.Japan seminar Differential and Functional Equations,Minnesota,June(1967),Benjamin,New York(1967),367-382.
    [3] Anderson,C.H.,Asymptotic oscillation results for solutions to first-order nonlinear differential-difference equations of advanced type,J.Math.Anal.Appl.,24(1968),430-439.
    [4] Kato,T.and J.B.Mcleod,The functional-differential equation y'(x)=ay(λx)+by(x),Bull.Amer.Math.Soc.,77(1971),891-937.
    [5] Kusano,T.and H.Onose,Nonlinear oscillation of second order functional differential equations with advanced argument,J.Math.Soc.Japan,29(1977),541-559.
    [6] Onose,H.,Oscillatory properties of the first order differential inequalities with deviating arguments,Funkcial.Ekvac.,26(1983),189-195.
    [7] 郑祖麻,林宜中,具超前变元微分方程的基本存在性定理,福建师范大学学报(自然科学版),2(1983),17-24.
    [8] 林宜中,具超前变元微分方程的几个问题,福建师范大学学报(自然科学版),1(1986),9-16.
  • 加载中
计量
  • 文章访问数:  1804
  • HTML全文浏览量:  75
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  1987-02-20
  • 刊出日期:  1988-06-15

目录

    /

    返回文章
    返回