留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维变形状态下Ⅰ型裂纹裂尖应力场结构的有限元分析*

陈晓明 官忠信 庄嘉麟

陈晓明, 官忠信, 庄嘉麟. 三维变形状态下Ⅰ型裂纹裂尖应力场结构的有限元分析*[J]. 应用数学和力学, 1988, 9(6): 559-566.
引用本文: 陈晓明, 官忠信, 庄嘉麟. 三维变形状态下Ⅰ型裂纹裂尖应力场结构的有限元分析*[J]. 应用数学和力学, 1988, 9(6): 559-566.
Chen Xiao-ming, Guan Zhong-xin, Zhuang Jia-lin. Analysis to the Stress Construction at the Vicinity of Crack Tip for Mode I Fracture in 3-D State Using Finite Element Method[J]. Applied Mathematics and Mechanics, 1988, 9(6): 559-566.
Citation: Chen Xiao-ming, Guan Zhong-xin, Zhuang Jia-lin. Analysis to the Stress Construction at the Vicinity of Crack Tip for Mode I Fracture in 3-D State Using Finite Element Method[J]. Applied Mathematics and Mechanics, 1988, 9(6): 559-566.

三维变形状态下Ⅰ型裂纹裂尖应力场结构的有限元分析*

基金项目: * 国家自然科学基金

Analysis to the Stress Construction at the Vicinity of Crack Tip for Mode I Fracture in 3-D State Using Finite Element Method

  • 摘要: 本文用ADINA(Automatic Dynamical Incremental Nonlinear Analysis)有限元程序计算了三维变形条件下,幂硬化材料紧凑拉伸(CT)试样的应力应变场,并根据计算结果分析了Ⅰ型裂纹裂尖应力场的结构,发现在厚度方向的任一平面上,裂尖应力场的表达式都可写成r,θ坐标变量分离的形式,从而r的函数部分可展成罗朗级数,且三个正应力分量具有相同的数量级.这两个结论为从理论上求解Ⅰ型裂纹裂尖应力场的数学表达式提供了两个有根据的假设条件,可大大减化求解过程.
  • [1] Kikuchi,M.and H.Miyamoto,The thickness effect of side grooved CT specimens,Int.J.Pres.and Piping,16(1984),1-16.
    [2] Macik,S.N.and L.S.Fu,Elasto-plastic analysis for a finite thickness rectangular Plate containing a through-thickness central crack,Int.J.Fract.,18(1982),45-63.
    [3] Wellman,G.W.,et al.,Three-dimensional elastic-plastic finite element analysis of three-point bend specimens,ASTM STP 868(1985),214-237.
    [4] Ayres,D.J.,A numerical procedure for calculating stress and deformation near a slit in a threedimension elastic-plastic solid,Eng.Fract.Mech.,2(1970),87-106.
    [5] Bapu Rao,M.N.,Three-dimensional stress problem of a finite thick plate with a through crack under tension,Proceedings of ICF6,2(1984),963-970.
    [6] Bapu Rao,M.N.,Three-dimensional analysis of a finite thick plate with a through crack,Int.J.Fract.,17(1981),43-46.
    [7] 梁昆淼,《数学物理方法》,人民教育出版社(1978),36-60.
  • 加载中
计量
  • 文章访问数:  1788
  • HTML全文浏览量:  112
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  1987-01-21
  • 刊出日期:  1988-06-15

目录

    /

    返回文章
    返回