一类向量四阶非线性微分方程边值问题的奇摄动
Singular Perturbation of Boundary Value Problem for a Vector Fourth Order Nonlinear Differential Equation
-
摘要: 我们研究伴有边界摄动的向量边值问题:ε2y(4)=f(x,y,y″,ε,μ)(μ
y(x,ε,μ)|x=μ=A1(ε,μ),y(x,ε,μ)|x=1-μ=B1(ε,μ)y″(x,ε,μ)|x=μ=A2(ε,μ),y″(x,ε,μ)|x=1-μ=B2(ε,μ)其中y,f,Aj和Bj(j=1,2)是n维向量函数和ε,μ是两个正的小参数.虽然纯量边值问题曾有人研究过,但这样的向量边值问题尚未被研究.在适当的假设下,利用微分不等式方法,我们找到向量边值问题的一个解和获得一致有效的渐近展开式. Abstract: We study the vector boundary value problem with boundary perturbations: ε2y(4)=f(x,y,y″,ε,μ)(μy(x,ε,μ)|x=μ=A1(ε,μ),y(x,ε,μ)|x=1-μ=B1(ε,μ)y″(x,ε,μ)|x=μ=A2(ε,μ),y″(x,ε,μ)|x=1-μ=B2(ε,μ)where y f, Aj and Bj (j=1,2) are n-dimensional vector functions and ε, μ are two small positive parameters. This vector boundary value problem does not appear to have been studied, although the scalar boundary value problem has been treated. Under appropriate assumptions, using the method of differential inequalities we find a solution of the vector boundary value problem and obtain the uniformly valid asymptotic expansions. -
[1] Howes, F.A., Differenual inequalities and applications to nonlinear singular perturbation problems, J. of Diff. Eqs., 20(1976), 133-149. [2] Chang, K.W. and F.A.Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer-Verlag. New York, Berlin, Heidelberg. Tokyo(1984). [3] O'Malley, R.E., Introduction to Singular Perturbations, Academic Press(1974). [4] 林宗池、郑永树,高阶常微分方程边值问题的奇摄动(I),福建师大学报(自然科学版), 2(1980),13-28. [5] 刘光旭,关于奇摄动拟线性系统,应用数学和力学,8,11 (1987), 967-976. [6] Kelley, W.G., A geometric method of studying two point boundary value problems for second order systems, Rocky Moun. J. of Math., 7(1977), 251-263. [7] Kelley, W.G., Boundary value problems for pairs of second order equations containing a small parameter, Rocky Moun. J. Math., 12, 4(1982), 655-667.
计量
- 文章访问数: 1868
- HTML全文浏览量: 84
- PDF下载量: 483
- 被引次数: 0