Hamilton Operators and Homothetic Motions in R3
-
摘要: 四元数是一个可除环.它可表达为R3中通过原点的平面中的四元数乘积的域.利用Hamilton算子,定义了在该平面上的相似运动,并讨论了这些运动的新特性.
-
关键词:
- Hamilton算子 /
- 相似运动 /
- 四元数
Abstract: Quaternion is a division ring. It is shown that planes passing through the origin can be made a field with the quaternion product in R3. The Hamiltonian operators help us define the homothetic motions on these planes. New characterizations for these motions are investigated.-
Key words:
- Hamilton operator /
- homothetic motion /
- quaternion
-
[1] Pfaff Frank R.A commutative multiplication of number triplets[J].Amer Math Monthly,2000,107:156—162. doi: 10.2307/2589437 [2] Agrawall O P.Hamilton operators and dual-number quaternions in spatial kinematic[J].Mech Mach Theory,1987,22(6):569—575. doi: 10.1016/0094-114X(87)90052-8 [3] Yayli Y.Homothetic motions at E[KG*4]. 4[J].Mech Mach Theory,1992,27(3):303—305. [4] Hacisalihoglu H H.On the rolling of one curve or surface upon another[J].Proc Roy Irish Acad Sect A,1971,71(2):13—16. [5] Yayli Y,Hacisalihoglu H H,Ergin A A.On the division algebras in R3[J].Algebras,Groups and Geometries,2001,18:341—348.
计量
- 文章访问数: 2846
- HTML全文浏览量: 180
- PDF下载量: 462
- 被引次数: 0