厄密多项式在结构动力响应计算中的应用
The Usage of Hermite Polynomial in the Calculation of Structural Dynamic Responses
-
摘要: 本文利用正交多项式级数部分和的"最佳近似"性,推出了求解结构动力响应的付里叶-厄密多项式展开法.文中详细推导了振动系统的位移和速度响应的分步解析表达式,并讨论了计算格式的稳定性条件,通过了实例考核与精确度对比分析.Abstract: This paper employs the best approximation of part series sum of normal polynomials.and proposes a new method with the Fourier-Hermite polynomial expansion expressing structural dynamic responses.Analytic expressions of displacement and velocity responses of vibrational systems are e stablished in this paper,and stability condition of the step-by-step algorithm is discussed.Finally,a computational example is demonstrated,and the precision of its results is compared with conventional methods.
-
[1] Bathe,K.J.and E.L.Wilson,Numerical Methods in Finite Elements Analysis,Prentice-Hall,Inc.,306-362. [2] Erdelyi,Arthur,High Transcendental Functions Vol.Ⅱ,McGraw-Hill Book Co.Inc.(1953). [3] H.H.列别捷夫,《特殊函数及其应用》,张燮译,高等教育出版社(1957), [4] 王竹溪、郭敦仁,《特殊函数概论》,科学出版社(1979). [5] Zienkiewicz,D.C.,The Finite Element Methods,Third edition,McGraw-Hill Book Co.,(569-606). [6] 朱礼文,结构响应分析的幂级数方法,应用力学学报,1(1987).
计量
- 文章访问数: 1899
- HTML全文浏览量: 120
- PDF下载量: 505
- 被引次数: 0