N-S方程组的通用形式及近似因式分解
On General Form of Navier-Stokes Equations and Implicit Factored Scheme
-
摘要: 基于张量分析,本文在任意曲线坐标系中导出了用原始变量表达的Navier-Stokes(以下简称N-S)方程组弱守恒型通用形式,其中速度采用了逆变或协变分量;与将复杂的坐标变换嵌入该方程组的流行做法相比,本文所得方程组的形式简捷、直观、更适于在贴体曲线坐标系中直接求解.文中详细讨论了这个方程的因式分解过程即将一个n维流动化为n步一维问题来求解,每一步只需解一个块三对角矩阵,从而避开了大型矩阵求逆,提高了解题速度,进一步推广和发展了Beam-Warming的因式分解法.Abstract: A general weak conservative form of Navier-Stokes equations expressed with respect to non-orthogonal Curvilinear coordinates and with primitive variables was obtained by using tensor analysis technique, where the contravariant and covariant velocity components were employed. Compared with the current coordinate transformation method, the established equations are concise and forthright, and they are more convenient to be used for solving problems in body-fitted curvilinear coordinate system. An implicit factored scheme for solving the equations is presented with detailed discussions in this paper. For n-dimensional flow the algorithm requires n-steps and for each step only a block tridiagonal matrix equation needs to be solved. It avoids inverting the matrix for large systems of equations and enhances the speed of arithmetic. In this study, the Beam-Warming's implicit factored schceme is extended and developed in non-orthogonal curvilinear coordinate system.
-
[1] 吴仲华,《叶轮机械三元流动讲义》,中国科技大学(1975). [2] Thompson, J.F., Grid generation techniques in computational fluid dynamics, J. AIAA, 22 (1984), 1505-1523. [3] 王保国,跨声速流函数方程强隐式解及确定密度场的新方案,计算物理,2,41985),474-481. [4] 钱伟长,粘性流体力学的变分原理和广义变分原理,应用数学和力学,5, 3 (1984), 305-322. [5] Beam, R.M. and R.F. Warming, An implicit factored scheme for the compressible Navier-Stokes equations J. AIAA, 16 (1978), 393-402. [6] MacCormack, R.W., A numerical method for solving the equations of compressible viscous flow, AIAA paper 81-0110 (1981). [7] Steger, J.L., Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries, J. AIAA, 16 (1978), 679-686. [8] 王保国,使用非正交曲线坐标和作正交速度分量的含分流叶栅或串列叶栅的s1流面正问题流场矩阵解,研究生学位论文,中国科学院工程热物理研究所(1981). [9] Chapman, S. and J.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge (1970). [10] 卞荫贵,《边界层理论》(上、下册),中国科技大学(1979). [11] H.A.基利契夫斯基著,郭乾荣译,《张量计算初步及其在力学上的应用》,高等教育出版社(1962). [12] 张涵信,差分计算中激波上、下游解出现波动的探讨,空气动力学学报,1 (1984), 12-19.
计量
- 文章访问数: 2604
- HTML全文浏览量: 144
- PDF下载量: 695
- 被引次数: 0