摘要:
当具有n个自由度的系统加有P个冲击性的约束时,要求解系统的运动,一般都需要解含n+P个方程的方程组.本文提出以待定乘子法为基础,分别就取广义坐标和伪坐标的二种情况,从n个碰撞方程中消去未知的待定乘子,将碰撞方程简化为n-P个,它和P个冲击性约束方程一起组成了含n个方程的方程组,就能求解具有冲击性约束的碰撞问题,这比一般方法更为简便.
Abstract:
In order to solve the problem of motion for the system with n degrees of freedom under the action of p impulsive constraints, we must solve the simultaneous equations consisting of n+p equations. In this paper, it has been shown that the undetermined multipliers in the equations of impact can be cancelled for the cases of both the generalized coordinates and the quasi-coordinates. Thus there are only n-p equations of impact. Combining these equations with p impulsive constraint equations, we have simultaneous equations consisting ofn equations. Therefore, only n equations are necessary to solve the problem of impact for the system subjected to impulsive constraints. The method proposed in this paper is simpler than ordinary methods.