微极弹性动力学中非保守力场问题的变分方法
Variational Methods for the Problems of Nonconservative Force Fields in the Micropolar Elastodynamics
-
摘要: 本文利用卷和卷的交换性质给出并证明了微极弹性动力学中非保守力场问题的几种拟变分原理。本文结果还可以推广到非局部弹性介质和非局部微极弹性介质力学中去。Abstract: Based on the properties of the convolution and the convolute commutation,some quasi-variational principles for the problems of nonconservative force field in the micropolar elastodynamics are given and verified in this paper.The theorem given in this paper can be applied to the theories of the nonlocal elastic mediums and the nonlocal micropolar elastic mediums.
-
[1] 胡海昌.《弹性为学的变分原理及其应用》,科学出版社(1981). [2] Washizu,K.,Variational Methods in Elasticity and Plasticity,Pergamon Press(1968). [3] 钱伟长,《变分法及有限元》(上册),科学出版社(1968). [4] Segel,Lee A.,Mathematics Applied to Continuum Mechanics,Macmillan Publishing Co.Inc(1977). [5] 钱伟长,弹性理论中广义变分原理的研究及其在有限元计算中的应用,力学与实践,1,2(1979) [6] 胡海昌,论弹性体力学和受范体力学中一般变分原理,物理学报10,3(1954),259. [7] 戴天民,非局部微极线性介质理论中的各种互易定理和变分原理,应用数学和力学,1,1(1980),89-105. [8] Leipholz,H.,On conservative elastic systems of the first and second kind,Ing-Arch 43(1974). [9] 刘殿魁、张其浩,弹性理论中非保守问题的一般变分原理,力学学报,6(1981),562. [10] Eringen,A.C.and C.B.Kofadav,Polar Field Theories,Acadmic Press(1976). [11] Eringen,A.C.and E.S.,Suhubi,Elastodynamics Ⅱ(1975).
计量
- 文章访问数: 1613
- HTML全文浏览量: 49
- PDF下载量: 540
- 被引次数: 0