波纹圆薄板的非线性振动
Non-Linear Vibration of Circular Corrugated Piates
-
摘要: 本文首先用最小作用量原理推导出波纹圆薄板的变分方程。选取波纹圆薄板中心最大振幅为摄动参数,采用摄动变分法,一次近似求得了波纹板线性振动时的固有频率,继之求得了波纹板的非线性固有频率。通过和线性结果比较,证实了本文的尝试是可行的。Abstract: In this paper, first by using Hamilton principle, we derive the variational equation of circular corrugated plates. Taking the central maximum amplitude of circular corrugated plates as the perturbation parameter and adopting the perturbation variational method, in the first-order approximation, we obtain the natural frequency of linear vibration of circular corrugated plates and then the nonlinear natural frequency of the corrugated plates. By comparing with the linear results, the attempt of this paper is proved feasible.
-
[1] 钱伟长,《变分法及有限元》,上册,科学出版社(1980). [2] 刘人怀,波纹圆板的特征关系式,力学学报,1(1978), [3] 陈山林,浅正弦波纹圆板在均布载荷下的大挠度弹性特征,应用数学和力学,1, 2 (1980). [4] 王新志,波纹圆板在均布载荷下的弹性特征,全国第六届弹性元件学术论文集(1981). [5] B, N.费奥多谢夫,《精密仪器弹性元件的理论与计算》,科学技术出版社(1963)., 27 (1960). [6] Бурмистров Е.Ф.,Иженерныц Сборнuн.27(1960) [7] 叶开沅、王新志、胡小方,波纹板在非均匀温度场内的非线性问题(待发表). [8] S.铁摩辛柯等著,《工程中的振动问题》,人民铁道出版社(1978). [9] A, c.沃耳密尔著,《柔韧板与柔韧壳》,科学出版社(1959). [10] 谢志诚等,在材料非线性问题中的摄动有限元法,应用数学和力学,4, 1 (1983),123-134. [11] Arun, K.N.and L.M.Bernard, A perturbation solution of rectangular orthotropic plates, Int.J Nonlinear mechanics, 16, 5-6(1981), 401-408. [12] Pen, L.Z.and S.Wang, A perturbation-variational solution of the large deflection of rectangular plates under uniform load, Proceedings of ICNM., Science Press, Beijing, China(1985).
计量
- 文章访问数: 1724
- HTML全文浏览量: 63
- PDF下载量: 631
- 被引次数: 0