稳定性、分叉、浑沌的泛系研究
Pansystems Studies in Stability, Bifurcation and Chaos
-
摘要: 本文将不动子集划分为三种类型,重点讨论Ⅱ型不动子集的存在性,将不动子集的研究同稳定性、分叉、浑沌等非线性问题的研究联系起来,并且提出一种李雅普诺夫稳定性及其第二方法的离散拟化.Abstract: This paper divides fixed subsets into three kinds, mainly discusses the existence of II-type fixed subset, connects the investigations in fixed subsets with the studies in non-linear problems, such as stability, bifurcation, chaos, etc., and proposes a kind of discrete simulation to Liapunov stability and his second method.
-
[1] Wu Xue-mou,Pansystems methodolgy:Concepts,theorems and applications(Ⅰ)-(Ⅳ),科学探索,1,2,4(1982),1,4(1983),1(1984). [2] 吴学谋,生态学、医学与诊断学的泛系元理论(I)-(l),大自然探索,2,3 (1983),1 (1984). [3] Istratescu,Vasile I.,Fixed Point Theory,D.Reidel Publishing Company(1981). [4] 高隆颖、王书基,泛对称与不动泛系定理,应用数学和力学,5,5(1984),743-747. [5] Gao Long-ying,Fixed pansystems theorems and fuzzy fixed point,BUSFAL,1(1984). [6] 许淞庆,《常微分方程稳定性理论》,上海科技出版社(1962). [7] Wu Xue-mou,Pansystems methodology and non-linear analysis: New studies and bifurcation.catastrophe,chaos and stability,Proceedings of International Conference of Non-Linear Mechanics(1985). [8] 朱照宣,非线性动力学中的浑沌,分叉、突变与稳定性学术会议(中国)(1983).
计量
- 文章访问数: 1722
- HTML全文浏览量: 96
- PDF下载量: 461
- 被引次数: 0