留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非关联塑性切线刚度矩阵的对称表示

熊文林

熊文林. 非关联塑性切线刚度矩阵的对称表示[J]. 应用数学和力学, 1986, 7(11): 983-991.
引用本文: 熊文林. 非关联塑性切线刚度矩阵的对称表示[J]. 应用数学和力学, 1986, 7(11): 983-991.
Xiong Wen-lin. Symmetric Formulation of Tangential Stiffnesses for Non-Associated Plasticity[J]. Applied Mathematics and Mechanics, 1986, 7(11): 983-991.
Citation: Xiong Wen-lin. Symmetric Formulation of Tangential Stiffnesses for Non-Associated Plasticity[J]. Applied Mathematics and Mechanics, 1986, 7(11): 983-991.

非关联塑性切线刚度矩阵的对称表示

Symmetric Formulation of Tangential Stiffnesses for Non-Associated Plasticity

  • 摘要: 文中建议的数值方法使可能在非关联塑性切线刚度程序中采用对称解法。
  • [1] Barton,N.and V.Choubey.The shear strength of rock joints in theory and practice,Rock Mechanics 10 1977,1-54.
    [2] Davis,E.H.Theory of plasticity and the failure of soil masses.Soil Mechanics,ed.I.K.Lee,Butter Worth(1969).
    [3] Mroz,Z.,Non-associated laws in plasticity.J.Mech.and Phys.Appl.2,(1963),21-41.
    [4] Naylor,D.J.and G.N.Pande,Finite Elements in Geotechnical Engineering Pineridge Press,Swansea,U.K.(1981).
    [5] Owen,D.R.J.and E.Hinton,Finite Elements in Plasticity,Theory and Practice Pineridge Press,Swansea,U.K.(1980).
    [6] Pande,G.N.and ST.Pietruszczak Symmetric tangential stiffness formulation for nonassociated plasticity,C/R/405,the Univ.College of Swansea,U.K.(1982).
    [7] Pande,G.N.and W.Xiong,An improved multi-laminate model of joint rock masses Numerical Models in Geomechanics.A.A.BALKEMA/ROTTERDAM (1982),218-226.
    [8] Zienkiewicz,O.C.,The Finite Element Method,MCGRAW-HILL(1977).
  • 加载中
计量
  • 文章访问数:  1893
  • HTML全文浏览量:  129
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  1984-10-21
  • 刊出日期:  1986-11-15

目录

    /

    返回文章
    返回