三维非定常等熵流中的Chaplygin方程——Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅲ)
Chaplygin Equation in Three-Dimensional Non-Constant Isentropic Flow——The Theory of Functions of a Complex Variable under Dirac-Pauli Represen tation and Its Application in Fluid Dynamics(Ⅲ)
-
摘要: 本文是文[1]的继续。在本文中,我们将等熵气体动力学方程组分成两类问题来处理:其一为三维非定常无旋流(因而也是等熵流),其二为三维非定常等熵无散流(即不可压缩等熵流)。我们应用Dirac-Pauli表象的复变函数理论并采用Legendre变换,将此两类问题的方程组变换到速度空间,从而得到了两种推广的Chaplygin方程。推广的Chaplygin方程是一个线性偏微分方程,它的通解至多由超几何函数表示。由此,我们求得了气体动力学三维非定常等熵流的一般问题的通解。Abstract: This work is the continuation of the discussion of ref, [1], In this paper we resolve the equations of isentropic gas dynamics into two problems: the three-dimensional non-constant irrotational flow (thus the isentropic flow, too), and the three-dimensional non-constant indivergent flow(i.e, the incompressible isentropic flow).We apply the theory of functions of a complez variable under Dirac-Pauli representation and the Legendre transformation,transform these equations of two problems from physical space into velocity space,and obtain two general Chaplygin equations in this paper, The general Chaplygin equation is a linear difference equation,and its general solution can be expressed at most by the hypergeometric functions, Thus we can obtain the general solution of general problems for the three-dimensional non-constant isentropic flow of gas dynamics.
-
[1] 沈惠川,Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(I).应用数学和力学,7, 4 (1986), 365-382. [2] 沈惠川,均匀不可压缩蠕流动力学的通解,自然杂志,7, 10 (1984) 799; 7,12 (1984),940. [3] 钱学森,《气体动力学诸方程》(《气体动力学基本原理》A编),徐华舫译,科学出版社(1966). [4] Ландау Л.Д.и Е.М.Лифшип,《连续介质力学》,彭旭麟译,人民教育出版社(1958).,《流体力学》,孔祥言、徐燕侯、庄礼贤译,高等教育出版社(1983.1984). [5] Böhm, D,关于量子力学"隐"变数解释的建议,自然辩证法研究通迅,3 (1959), 42;4 (1959), 63. [6] 谷内俊弥,西原功修,《非线性波动》,徐福元等译,原子能出版社(1981). [7] Eckhaus, W, and A, Van Harten,《逆散射变换和孤立子理论》,黄迅成译,陈以鸿校.上海科学技术文献出版社(1984). [8] Oswatitsch, K 《气体动力学》,徐华舫译,科学出版社(1965). [9] Chaplygin, C, A.,Über gasstrahlen, Wiss, Ann, Univ,Moskau Moth, Phys,21(1904),1-121,or NACA TM 1063. [10] Ringleb, F,Lösungen der differentialgleichung einer adiabatischen strömung, ZAMM,20 (1940),185-198. [11] 沈惠川,Navier-Stokes方程的精确解.Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(I),应用数学和力学.7, 6 (1986), 517-522. [12] Prandtl, L, K, OsWatitsch and K, Wieghardt,《流体力学概论》,郭永怀、陆士嘉译,科学出版社(1981). [13] Fung, Y, C,(冯元祯),《连续介质力学导论》,李松年、马和中译,科学出版社(1984). [14] 汤川秀榭,《现代物理学の基碰》[第一版],Vol. 1,《古典物理学》(I),岩波害店(1975). [15] Dirac, P.A. M.,《量子力学原理》.陈咸亨译.科学出版社(1965). [16] Fliigge, S,《实用量子力学》,宋孝同等译,人民教育出版社(1981-1983).
计量
- 文章访问数: 2681
- HTML全文浏览量: 121
- PDF下载量: 622
- 被引次数: 0