留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于半线性热方程的防爆与防熄问题

严子谦

严子谦. 关于半线性热方程的防爆与防熄问题[J]. 应用数学和力学, 1986, 7(8): 713-718.
引用本文: 严子谦. 关于半线性热方程的防爆与防熄问题[J]. 应用数学和力学, 1986, 7(8): 713-718.
Yan Zi-qian. On the Problem of Preventing Blowing-up and Quenching for Semilinear Heat Equation[J]. Applied Mathematics and Mechanics, 1986, 7(8): 713-718.
Citation: Yan Zi-qian. On the Problem of Preventing Blowing-up and Quenching for Semilinear Heat Equation[J]. Applied Mathematics and Mechanics, 1986, 7(8): 713-718.

关于半线性热方程的防爆与防熄问题

On the Problem of Preventing Blowing-up and Quenching for Semilinear Heat Equation

  • 摘要: 本文研究初值问题
    ut=Δu+g(t)f(u)(t>0),u|t=0=u0(x)
    和初边值问题
    ut=Δu+g(t,x)f(u)(t>0,x∈Ω),u|t=0=u|∂Ω=0
    之解的整体存在性。如文献[6]中所作的那样,在非线性项中引进因子g(t)或g(t,x),是为了防止解的爆破或熄灭现象发生。本文的结果表明,文献[6]的两个定理中对f,g和u0的大部分限制可以取消或者减弱;对g可以只要求它在f大时充分小;在一定条件下,控制初始状态即可避免爆破。
  • [1] Kaplan, S,On the growth of solutions of quasi-linear parabolic equations, Comm,Pure Appl, Math,1g (1983),305-330.
    [2] Fujita, H,On the blowing up of solutions of the Cauchp problem for ut=Δu+u1+u,J.Fac, Sci, Univ, Tokpo, Sect, I,13(1966),109-124.
    [3] Hayakawa, K,On nonexistence of global solutions of some semilinear parabolic differential equations, Proc, Jopan Acad,49(1973),503-505.
    [4] Kawarada, H,On solutions of initial-boundary problem for ut=uxx+1/(1-u),Publ,RIMS,Kyoto Univ,10 (1975),729-736.
    [5] Acker, A, and W, Walter, The quenching problem for nonlinear parabolic differential equations, Lect, Notes in Math,Springer-Vcrlag,1-2(1976),564.
    [6] 陈庆益,关于半线性热方程的爆破及熄灭问题,数学物理学报,2 (1982),17-23.
    [7] Fife,P, C,Mathematical aspects of reacting and diffusing systems, Lect, Notes in Biomathematics,Springer-Verlag(1979),28.
    [8] Weissler,F. B,Existence and-nonexistence of global solutions for a semilinear heat equation,Isreal J.Math,38 (1981),29-40.
  • 加载中
计量
  • 文章访问数:  2008
  • HTML全文浏览量:  99
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  1983-05-03
  • 刊出日期:  1986-08-15

目录

    /

    返回文章
    返回