双重介质中溶质径向运移微分方程组的精确解
Analytical Solution of Partial Differential Equations for Radial Transport of a Solute in Double Porous Media
-
摘要: 本文对溶质径向运移问题综合了数学模型,考虑了非均衡线性吸附作用和介质的双重性质以及溶质的衰变.在第一类边值条件下,用Laplace变换求得了严格的解析解.用FORTRAN程序在DJS-040机上对无量纲化的问题解进行了计算.求出了浓度的分布和变化,讨论了有实际意义的各种极限情况并给出了相应的解,通过数值分析,得出了几点有价值的结论.Abstract: The mathematical model for radial transport of a solute is summed up in this paper.The action of non-equilibrium linear adsorption,the double property of porous media and the decay of solute are considered.With the first kind of boundary condition,one finds the analytical solution of these equations by Laplace transform and calculates the dimensionless solution by FORTRAN program with DJS-040.The distribution and change of solute are evaluated and the solution under various limit cases is given.By numerical analysis,one obtains some valuable conclusions.
-
[1] Bear,J.,Hydrodynamics of Groundwater,MoGraw-Hill Series in Water Resources and Environmental Engineering(1979). [2] Tang,D.H.and D.K.Babu,Analytical solution of a velocity dependent dispersion problem,Water Resources Res.,15,6(1979). [3] Smedt,F.De and P.J.Wierenga,A generalized solution for solute flow in soils with mobile and immobile water,Water Resources Res.,15,5(1979). [4] 黄军琪,非均衡线性吸附系统中衰变溶质的径向输运问题研究,硕士论文,中国科学院兰州渗流力学研究室(1984).
计量
- 文章访问数: 2058
- HTML全文浏览量: 120
- PDF下载量: 714
- 被引次数: 0