Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅰ)
The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(Ⅰ)
-
摘要: (1)本文摒弃了传统的四元数理论,建立了Dirac-Pauli表象的复变函数理论,从而使多元多维问题成为较简单的问题;(2)本文用Dirac-Pauli表象的复变函数理论,简化了不可压缩粘流动力学的Navier-Stokes方程和等熵气体动力学方程组,使作为流体力学中心问题的上述两类方程组化归为只有一个复未知量的非线性方程.是故易有太极,是生两仪;两仪生四象,四象生八卦.——《易传·系辞上》.Abstract: In this paper:(A)We cast aside the traditional quaternion theory and build up the theory of functions of a complex variable under Dirac-Pauli representation.Thus the multivariate and multidimensional problems become rather simple problems.(B)We simplify the Navier-Stokes equation of incompressible viscous fluid dynamics and the equations group ofisentropic aerodynamics by theory of functions of a complex variable under Dirac-Pauli representation.And the above-equations,as central problems of fluid dynamics,are classified as the nonlinear equation with only one complex unknown function.
计量
- 文章访问数: 2883
- HTML全文浏览量: 143
- PDF下载量: 799
- 被引次数: 0