Free Fisher Information and Amalgamated Freeness
-
摘要: 在算子值非交换概率空间中引入算子值自由Fisher信息量的概念,这一定义是对D.Voiculescu在有迹的von Neumann代数上定义的自由Fisher信息量的推广.证明了算子值自由Fisher信息量与合并自由性是密切相关的,即证明了若干个算子值随机变量的自由Fisher信息量的可加性等价于这些随机变量的合并自由性.并且也类似地得到了Cramer-Rao不等式.
-
关键词:
- Hilbert C*-模 /
- 算子值随机变量 /
- 自由Fisher信息量
Abstract: The notion of operator-valued free Fisher information was introduced.It is a generalization of free Fisher information which was defined by D.Voiculescu on tracial von Neumann algebras.It is proved that the operator-valued free Fisher information is closely related to amalgamated freeness,i.e.the operator-valued free Fisher information of some random variables is additive if and only if these random variables are a free family with amalgamation over a subalgebra.Cramer-Raoinequality in operator-valued settings is also obtained. -
[1] Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅲ:the absence of Cartan subalgebras[J].Geometric and Functional Analysis,1996,6(1):172—199. doi: 10.1007/BF02246772 [2] Ge L.Applications of free entropy to finite von Neumann algebras Ⅱ[J].Annals of Mathematics,1998,147(2):143—157. doi: 10.2307/120985 [3] Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅴ:Noncommutative Hilbert transforms[J].Inventiones Mathematicae,1998,132(1):189—227. doi: 10.1007/s002220050222 [4] Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅵ:liberation and mutual free information[J].Advances in Mathematics,1999,146(1):101—166. doi: 10.1006/aima.1998.1819 [5] Voiculescu D.Operations on certain non-commutative operator-valued random variables[J].Astérisque,1995,232(1):243—275. [6] Sunder V S.An Invitation to von Neumann Algebras[M].New York:Springer-Verlag,1987. [7] Cover T M,Thomas J A.Elements of Information Theory[M].Chichester:John Wiley & Sons,Inc,1976. [8] Speicher R.Combinatorial theory of the free product with amalgamation and operator-valued free probability theory[J].Memoirs of AMS,1998,(627):1—88. [9] Nica A,Shlyakhtenko D,Speicher R.Operator-valued distributions—1:characterizations of freeness[J].International Mathematics Research Notices,2002,(29):1509—1538.
计量
- 文章访问数: 2487
- HTML全文浏览量: 94
- PDF下载量: 1172
- 被引次数: 0