非保守系统的积分不变量及其在现代物理中的应用
Integral Invariant in Noncoservative Systems and Its Application in Modern Physics
-
摘要: 本文导出了非保守系统的庞卡勒-卡当(Poincaré-Cartan)积分不变量和庞卡勒通用积分不变量.并以积分不变量为工具,研究了三度对称螺旋扇回旋加速器中粒子的非线性振动.结果表明,该方法是成功的.Abstract: In this paper, the Poincaré and Poincaré-Cartan integral invariants in nonconservative systems are established. According to the integral invariant, he non-linear oscillation of particles in 3-folded symmetry spiral sector cyclotron is investigated, It turns out that the method is successful.
-
[1] 刘成群、徐铭陶,非完整保守系统的积分不变量及其应用,第十六届国际理论及应用力学会议论文,丹麦(1984). [2] Vujanovic,B.,A variational principle for nonconservative dynamical systems.Z.Angew.Math.Mech.,55(1975),321. [3] 甘特马赫,《分析力学讲义》,人民教育出版社(1980).93-96. [4] Gordon,M.M.,et al.,Effects of field imperfections on radial stability in a three-sector cyclotron,Nuclear Instruments and Methods,18,19(1962),243. [5] Hayashi,C,Nonlinear Oscillation in Physics Systems,McGraw Hill Book Company,New York(1964).
计量
- 文章访问数: 1950
- HTML全文浏览量: 114
- PDF下载量: 604
- 被引次数: 0