关于任意边界缺口或裂纹群问题的一类解法——(Ⅲ)边界裂纹群的计算*
On a Class of Method for Solving Problems with Random Boundary Notches and/or Cracks——(Ⅲ) Computations for Boundary Cracks
-
摘要: 本文是文献[1]、[2]关于任意边界缺口或裂纹群问题的一类解法研究的继续。这里我们利用和发展了文献[1]、[2]所提出的理论和计算公式,对边界裂纹群问题进行了实际计算.数值计算实例表明:本文所给出的方法在特征参数适当的范围内是行之有效的.本文的结果扩充了“应力强度因子手册”中的工作.Abstract: This paper continues the discussions to a class of method for solving problems with random boundary notches and/or cracks in refs. [1] and [2]. Using the method developed in [1],[2] with important modifications about inclusion of singularities in the formulation, we arrive at a very effective computational process for problems with random boundary orucks. Actual computations for boundary cracks with or without applied tractions in their surfaces. Show that the present method is quite workable for the problems considered within proper range of characteristic parameters. The results obtained here extend the contents of "Handbook of Stress Intensity Factors" given by G. C. Sih.
-
[1] 欧阳鬯,关于任意边界缺口或裂纹群问题的一类解法-(Ⅰ)解析方法,应用数学和力学,2(1980),159-166. [2] 欧阳鬯,关于任意边界缺口或裂纹群问题的一类解法-(Ⅰ)缺口群的计算,应用数学和力学,5,2(1984),153-158. [3] Hayashi,T.,On the extension in an orthogonally aeolotropic strip with a circular hole,Trans,ASME.25(1959),1133. [4] Bowie,O.L.and C.E.Freese,Solution for periodic edge cracks in a semi-infinite sheet under tension,Unpublished data at AMMRC(1970). [5] Bowie,O.L.,Single edge crack in a semi-infinite region,J.Math.and Phys.,45(1966),356. [6] Hartranft,R.J.,et al.,Methods of Analysis and Solution of Crack Problems,G.C.Sih editor,Noordhoff,Holland(1971). [7] Emery,A.F.,Single edge crack with distributed load applied at part of its surface,Trans,ASME,Ser.D,J.Basic Enging.,88(1966),45.
计量
- 文章访问数: 2022
- HTML全文浏览量: 206
- PDF下载量: 651
- 被引次数: 0