Twisted Bifurcations and Stability of Homoclinic Loop With Higher Dimensions
-
摘要: 利用沿同宿环的线性变分方程的线性独立解作为在同宿环的小管状邻域内的局部坐标系来建立Poincaré映射,研究了高维系统扭曲同宿环的分支问题.在非共振条件和共振条件下,获得了1-同宿环、 1-周期轨道、 2-同宿环、 2-周期轨道和两重2-同期轨道的存在性、 存在个数和存在区域.给出了相关的分支曲面的近似表示.同时,研究了高维系统同宿环和平面系统非扭曲同宿环的稳定性.Abstract: By using the linear independent solutions of the linear variational equation along the homoclinic loop as the demanded local coordinates to construct the Poincar map,the bifurcations of twisted homoclinic loop for higher dimensional systems are studied.Under the nonresonant and resonant conditions,the existence,number and existence regions of the 1-homoclinic loop,1-periodic orbit,2-homoclinic loop,2-periodic orbit and 2-fold 2-periodic orbit were obtained.Particularly,the asymptotic repressions of related bifurcation surfaces were also given.Moreover,the stability of homoclinic loop for higher dimensional systems and nontwisted homoclinic loop for planar systems were studied.
-
Key words:
- local coordinate /
- Poincar map /
- twisted bifurcation /
- 1-periodic orbit /
- 2-periodic orbit /
- stability
-
[1] Arnold V I.Geometric Methods in the Theory of Ordinary Differential Equations[M].Second Edition.New York:Springer-Verlag,1983. [2] 李继彬,冯贝叶.稳定性,分支与混沌[M].昆明:云南科技出版社,1995. [3] Chow S N,Deng B,Fiedler B.Homoclinic bifurcation at resonant eigenvalues[J].J Dyna Syst Diff Equs,1990,2(2):177—244. doi: 10.1007/BF01057418 [4] ZHU De-ming.Problems in homoclinic bifurcation with higher dimensions[J].Acta Math Sinica(N S),1998,14(3):341—352. doi: 10.1007/BF02580437 [5] JIN Yin-lai,ZHU De-ming.Degenerated homoclinic bifurcations with higher dimensions[J].Chinese Ann Math,Ser B,2000,21(2):201—210. doi: 10.1142/S0252959900000224 [6] 金银来,李先义,刘兴波.非扭曲高维同宿分支[J].数学年刊,A辑,2001,22(4):473—478. [7] JIN Yin-lai,ZHU De-ming.Bifurcations of rough heteroclinic loops with three saddle points[J].Acta Mathematica Sinica,English Series,2002,18(1):199—208. doi: 10.1007/s101140100139 [8] Wiggins S.Introduction to Applied Nonlinear Dynamical System and Chaos[M].New York:Springer-Verleg,1990. [9] Fenichel N.Persistence and smoothness of invariant manifold for flows[J].Indiana Univ Math J,1971,21(2):193—226. doi: 10.1512/iumj.1971.21.21017 [10] ZHU De-ming.Homoclinic bifurcation with codimension 3[J].Chinese Ann Math, Series B,1994,15(2):205—216. [11] 朱德明.坐标变换的不变量[J].华东师范大学学报,1998,(1):19—21.
计量
- 文章访问数: 2477
- HTML全文浏览量: 90
- PDF下载量: 612
- 被引次数: 0