留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扇形板的富里哀—贝塞尔级数解

钱民刚 严宗达

钱民刚, 严宗达. 扇形板的富里哀—贝塞尔级数解[J]. 应用数学和力学, 1985, 6(4): 359-376.
引用本文: 钱民刚, 严宗达. 扇形板的富里哀—贝塞尔级数解[J]. 应用数学和力学, 1985, 6(4): 359-376.
Qian Min-gang, Yan Zong-da. Solution of Sector Plate by Fourier-Bessel Series[J]. Applied Mathematics and Mechanics, 1985, 6(4): 359-376.
Citation: Qian Min-gang, Yan Zong-da. Solution of Sector Plate by Fourier-Bessel Series[J]. Applied Mathematics and Mechanics, 1985, 6(4): 359-376.

扇形板的富里哀—贝塞尔级数解

Solution of Sector Plate by Fourier-Bessel Series

  • 摘要: 本文以加补充项的富里哀—贝塞尔双重级数的位移模式,对扇形弹性薄板在各种边界件条下的弯曲和振动问题,提出了一种应用范围比较广的、便于计算的、解析形式的解法.作为算例,文中给出了各种角度的径向边界简支或固定的扇形板在均布荷载或集中荷载作用下产生的挠度和弯矩的分布曲线,并与有关文献的数值结果进行了比较.本文推广了加补充项的富氏级数法的应用范围,并计算出各种角度的径向边界简支的扇形板的自振频率和节线的图表.
  • [1] Г.П托尔斯托夫,《福里哀级数》,龙季和译,高等教育出版社(1957),
    [2] 严宗达,《富氏级数在结构力学中的应用》,天津大学固体力学研究生讲义(1982).
    [3] S.铁摩辛柯、S沃诺斯基,《板壳理论》,科学出版社(1977).
    [4] 徐芝纶,《弹性力学》(下册),人民教育出版社(1979).
    [5] Deverall, L, I, and C, J.Thorne, Bending of thin ring-sector plates, Trans, ASME,J.Appl, Mech,18 (1951),359-363.
    [6] Conway, H, D, and M, K, Huang, The bending of uniformly loaded sectorial plates with clamped edges, Trans, ASME, T.Appl.Mech,19 (1952),5-8.
    [7] Woinowsky-Krieger, S,Clamped semicircular plate under uniform bending load,Trans, ASME, 1, Appl, Mhch,22,1 (1955),129.
    [8] Ben-Amoz, M,Note on deflections and fleaurel vibrations of clamped sectorial plates, Trans, ASME, T.Appl, Meeh 26 (1959),136-137.
    [9] Morley, L, S, D,Variational of the clamped plate to two successive membrane problems with an application to uniformly loaded sectors, Quart, Lour, Mech, and Appl, Maths,16 (1963),451-471.
    [10] Ram,chandra Rao, B, S, and J, K, Sridhara,A bi-orthogonality relation for clamped sector plates, Journal of Engineering Mathematics, 4,4, Oct, (1970), 361-367.
    [11] Ramachandra Rao, B, S, and V.Kolathaya, Bending of a uniformly loaded clamped sector plate, Appl.Sci.Res,26,5 (1972),383-388.
    [12] Zerych, Stefan, Application of Fourier-Basset double series to analysis of circular and sector plates, Archiwum Inzynierii Ladowej, 18,1 (1972),3-21.
    [13] Rubin, C,Bending of ring and pie-shaped sectors, Traits, ASME,J.Appl, Mech,E42, 2 (1975),492-494.
    [14] Bhattacharya, A, P,Bending of sectorial plate having clam ped straight edge, Traps,ASME, J.Appl.Mech,42,1 (1975),229-230.
    [15] Bhattacharya, A, P, and K.N.Bhowmic, Note on the bending of an annular sector plate resting on an elastic foundation, T,Struct, Mech,4, 3 (1976),321-325.
    [16] Mukhopadhyay, Madhyjit, A semianalytic solutioa for radially supported curved plates in bending, Forsch.Ing,Wes,44, 6 (1978),187-196.
    [17] Mukhopadhyay, Madhyjit, A semianalytic solutioa for radially supported curved plates in bending, Forsch.Ing,Wes,44, 6 (1978),187-196.
    [18] Williams, M, L,Jr Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending, Proceedings of the First U. S.National Congress of Applied Mechanics (1951),325-329.
    [19] Гонткевич В.С.,Собсmбенные Колебанuя Лласmuнок u Оболочек(1964).
    [20] 钱民刚,用富里哀一贝赛尔级数解扇形、环扇形板,天津大学80级研究生毕业论文(1982).
  • 加载中
计量
  • 文章访问数:  2224
  • HTML全文浏览量:  138
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  1983-12-02
  • 刊出日期:  1985-04-15

目录

    /

    返回文章
    返回