留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对合变换和薄板弯曲问题的多变量变分原理

钱伟长

钱伟长. 对合变换和薄板弯曲问题的多变量变分原理[J]. 应用数学和力学, 1985, 6(1): 25-40.
引用本文: 钱伟长. 对合变换和薄板弯曲问题的多变量变分原理[J]. 应用数学和力学, 1985, 6(1): 25-40.
Chien Wei-zhang. Involutory Transformations and Variational Principles with Multi-Variables in Thin Plate Bending Problems[J]. Applied Mathematics and Mechanics, 1985, 6(1): 25-40.
Citation: Chien Wei-zhang. Involutory Transformations and Variational Principles with Multi-Variables in Thin Plate Bending Problems[J]. Applied Mathematics and Mechanics, 1985, 6(1): 25-40.

对合变换和薄板弯曲问题的多变量变分原理

Involutory Transformations and Variational Principles with Multi-Variables in Thin Plate Bending Problems

  • 摘要: 本文利用拉氏乘子法把薄板弯曲问题的最小位能原理和最小余能原理的变分约束条件解除.从而导出了常见的广义变分原理.为了降低泛函中变量导数的阶次.我们用对合变换引进新的正则变量.于是,我们可以进一步利用拉氏乘子法,把这些对合变换当作变分约束而予以消除,从而导出了各种多变量的薄板弯曲广义变分原理.事实证明,使用上述拉氏乘子法,并不能消除一切变分约束;为此,我们进一步引用高阶拉氏乘子法消除这些剩下来的约束条件,从而导得了薄板弯曲问题的更一般的广义变分原理.
  • [1] Trefftz,E.,Ein Gegenstuck Zum Ritzschen Verfahren.Verh.d.2.Int:Kongr.fur Tcchnische Mechanik,Zurich(1927),101.
    [2] Trefftz,E.,Konvergenz and Fehlerschätzum beim kitzschen verfechren.Math.Ann.100(1928),503-552.
    [3] Friedrichs,K.O.,Ein Verfahren der Variationsrechnung…,Nachr.der Ges.d.Wiss.Gottingen(1929),13-20.
    [4] Courant,R.and D.Hilbert,Methods of Mathematical Physics,Interscience Publisher,Inc.,New York(1953),Original German Edition(1937).
    [5] 胡海昌,《弹性力学的变分原理及其应用》,科学出版社,(1981).
    [6] 钱伟长,高阶拉氏乘子法和弹性理论中更一般的广义变分原理,应用数学和力学,4, 2(1983),137-150.
    [7] Reddy,J.N.,On complementary variational principle for linear theory of plates. Journal of Structural Mechanics 4,4(1976),417.
    [8] 钱伟长,《变分法和有限元》,科学出版社,(1982).
  • 加载中
计量
  • 文章访问数:  1970
  • HTML全文浏览量:  69
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  1984-01-15
  • 刊出日期:  1985-01-15

目录

    /

    返回文章
    返回