奇摄动半线性系统的边界层和角层性质
Boundary and Angular Layer Behavior in Singularly Perturbed Semilinear Systems
-
摘要: 一些作者已对纯量边值问题εy"=h(t,y),a
+时其解的存在性和渐近性质.本文是在退化方程0=h(t,u)的解u=u(t)假定具有类似稳定性的条件下,将上述的研究推广到向量边值问题.退化解u(t)在(a,b)内是否有连续的一阶导数,将决定向量边值问题的渐近性质的类型,即出现边界层现象和角层现象. Abstract: Some authors employed the method and technique of differential inequalities to obtain fairly general results concerning the existence and asymptotic behavior, as ε→0+, of the solutions of scalar boundary value problems εuu=h(t,y),a[1] (1) Brish,N.I.,On Boundary Value Problems for the Equation εyn=f(x,y,Y') for small ε,Dokl.Akad.Nauk SSSR 95(1954),429-432. [2] (2) Hebets,P.and M.Laloy,Etude de probl鑝es aux limit閟 par la m鑤hode des surer sous-solutions,Lecture notes,Catholic University of Louvain,Belgium (1974). [3] (3) Bernfeld,S.and V.Lakshmikantham,An Introduction to Nonlinear Boundary Value Problems,Academic Press,New York,(1974). [4] (4) Boglaev,Yu.B.,The two-point problem for a class of ordinary differential equations with a small parameter coefficient of the derivative,USST Comp.Math.and Math.Phys.10 (1970),4,191-204. [5] (5) Chang,K.W.and F.A.Howes,Nonlinear Singular Perturbation Phenomena,Springer-Verlag Pub.(in press). [6] (6) O'Donnell,M.A.,Boundary and Corner Layer Behavior in Singularly Perturbed Semilinear Systems of Boundary Value Problems,SIAM J.Math.Anal.(to be published). 计量
- 文章访问数: 1829
- HTML全文浏览量: 79
- PDF下载量: 473
- 被引次数: 0