摘要:
双周期系数方程虽在数理方法中具有重要意义,但Lamé—Helmholtz方程的解至今仍来求出,因为Arscott和Möglich的双重级数展开法,Malurkar的非线性积分方程都无法进一步处理 本文的主要结果是由原方程导出一组线性微积分方程,利用积分变换,直接求得四类椭球波动函数,εci(sna),εsi(sna)(i=1,2,3,4),它的特例就是熟知的Lamé函数Eci(sna),Esi(sna),推广Riemann P函数思想,引进D函数来表示其变换规律。
Abstract:
Despite the great significance of equations with doubly-periodic coefficients in the methods of mathematical physics, the problem of solving Lamb-Helmholtz equation still remains to be tackled; Arscott and Möeglich's method of double-series expansion as well as Malurkar's non-linear integral equation are unable to reach the final solution, Our main result consists in obtaining analytic expression for ellipsoidal wave funcdons of four species εci(sna),εsi(sna)(i=1,2,3,4) by deriving a couple of linear integral equations and solving these by integral transform, including the well-known Lamé function Eci(sna),Esi(sna) as special case.Generalizing Riemann's idea of P-function, we introduce D-function to eapress their transformation properties.